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ABSTRACT 

The seismic design of pile foundations is currently performed in a relatively simple, 
deterministic manner.  This report describes the development of a performance-based framework 
to create seismic designs of pile group foundations that consider all potential levels of loading 
and their likelihoods of occurrence in a particular area. 

Because of the multitude of factors that can exist at a site, development of a complete, 
integrated procedure that would extend from ground motions to limit state exceedance was not 
practical.  To make the problem more useful to the research sponsors, a modular approach was 
developed.  The framework allows for the development and use of a structural model with a 
simplified representation of the foundation system.  The discrete soil model was developed using 
an equivalent linear format so that stiffness and damping characteristics were consistent with 
deformation levels.  The foundation loads computed in these analyses were then applied to a 
three-dimensional soil-pile group model to compute the resulting displacements and rotations of 
the pile cap.   

A computer program was developed to perform the calculations required to develop load 
and resistance factors and demand and capacity factors.  The calculations allow a designer to 
select a return period for limit state exceedance and then select the corresponding factors that 
will produce a design that corresponds to the desired limit state exceedance rate. 
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1 Introduction 

Pile foundations are commonly used to support heavy loads when near-surface soils are too weak 
or too compressible to support the loads without excessive settlement or lateral deflection.  
Bridges are often located at sites where weak and compressible soils exist, and are therefore 
frequently supported by pile foundations.  The behavior of pile foundations can be quite 
complicated, and their design must consider a variety of potential loading conditions.  Pile 
foundation design seeks to ensure that the foundation has adequate capacity to ensure stability 
under all potential loading conditions. 

Pile foundations can be subjected to both vertical and lateral loads, and to overturning 
moments.  These loads may exist under static conditions, depending on the site topography, 
bridge type, and bridge design.  The same components may also be applied dynamically due to 
traffic loading, impact loading, and natural hazards.  Among the most important of these natural 
hazards are earthquakes.  Earthquakes have caused damage to bridges in many past earthquakes, 
and a great deal of attention has been paid to the seismic design of bridges.  Pile foundations 
must also be designed to resist earthquake loads without exceeding the supporting capacity of the 
soil or undergoing excessive deflection or rotations. 

1.1 PURPOSE OF RESEARCH 

The purpose of this research was to develop a framework in which new concepts of 
performance-based earthquake engineering could be used to guide the development of load and 
resistance factors for force-based seismic design of pile foundations, and to develop procedures 
for computing analogous factors for displacement-based design.  The performance-based 
approach is based on a framework developed by the Pacific Earthquake Engineering Research 
(PEER) Center over the past 10-12 years.  This framework has been shown to produce seismic 
evaluations that are more complete and consistent when applied in areas of different seismicity.  
These characteristics have great potential benefit in the development of reliability-based design 
procedures since they account for all anticipated levels of ground shaking, rather than single 
levels that most existing design procedures are based upon.  By considering the effects of weak 
ground motions that occur relatively frequently and strong ground motions that occur only very 
rarely, the performance-based framework allows differences in local seismicity to be considered 
and accounted for in the design process.  The application of the performance-based approach has 
shown that consistent application of conventional procedures for design and evaluation can lead 
to inconsistent actual seismic demand and response levels in different seismic environments. 

The PEER framework for performance-based earthquake engineering is inherently 
probabilistic.  It explicitly recognizes and accounts for uncertainties in earthquake ground 
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motions, system response to those motions, physical damage resulting from the response, and 
losses due to the physical damage.  All of these quantities and the relationships between them are 
uncertain.  In the case of pile foundations, the relationships are complicated by the number of 
load and response quantities that must be considered, and by the interdependence of those 
quantities on each other.  A pile foundation can be considered to be subjected to five significant 
components of loading – vertical loads, horizontal loads in two orthogonal directions, and 
overturning moments about two orthogonal horizontal axes.  Torsion is not considered to be 
significant for individual pile foundations.  These five components of loading produce five 
components of response – vertical displacement, lateral displacements in two orthogonal 
directions, and rocking rotations about two orthogonal axes.  Each component of response, 
however, is influenced by all five components of loading.  This situation required modification 
of the basic PEER framework to render the reliability-based design problem tractable, and to 
develop a numerical analysis capable of computing reliability-based design factors. 

Seismic design can be accomplished in a number of different ways.  Historically, design 
has been based on loads and resistances, and reliability-based design has commonly been 
implemented using a load and resistance factor approach.  For essentially static loading 
conditions, time-invariant load and resistance factors can be developed for a given reliability 
index, or probability of failure.  For seismic design, however, load and resistance factors must 
account for the variability in loading that can occur – high levels of loading can occur in strong 
earthquakes that occur relatively rarely, and lower levels of loading can occur in weaker 
earthquakes that occur more frequently.  To develop a design that considers all potential levels of 
loading and their likelihoods of occurrence in a particular area, performance-based concepts can 
be used to combine the results of probabilistic seismic hazard analyses with probabilistic 
structural and foundation response analyses to predict a mean annual rate of failure, which is 
approximately equal to an annual probability of failure.  Load and resistance factors consistent 
with an annual probability of failure can then be determined. 

1.2 ORGANIZATION OF REPORT 

The report is organized into eight chapters with additional data provided in appendices.  
Following this introductory chapter, Chapter 2 presents a brief review of the behavior of pile 
foundations and the manner in which their capacities and load-deformation behavior is usually 
determined.  Chapter 3 describes different approaches to the evaluation of seismic response and 
to seismic design, and introduces the PEER performance-based earthquake engineering 
framework.  The chapter also introduces a modification of the PEER framework that allows it to 
be applied to different bridge and foundation systems in a computationally feasible way.  
Chapter 4 describes the numerical model used to predict the response of pile foundations in this 
research project.  The validation of a pile group model developed using the finite element 
program, OpenSees, against full-scale and model pile tests is described.  Chapter 5 describes the 
typical behavior of the OpenSees model under various dynamic loading conditions.  Numerous 
analyses of pile groups subjected to five components of dynamic loading were performed with 
different levels of initial (static) loading, different levels of dynamic loading, and different 
structural conditions.  The results of these analyses, and their characterization through a 
statistical model, are described.  The development of procedures for computing force-based load 
and resistance factors and displacement-based demand and capacity factors within a 
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performance-based earthquake engineering framework is described in Chapter 6.  Chapter 6 also 
describes a computer program developed to implement the performance-based framework, and 
shows how it matches theoretical behavior for conditions where theoretical solutions exist.  
Chapter 7 applies the computer program to a number of different foundation design situations in 
different seismic environments to illustrate the effects of different factors on load, resistance, 
demand, and capacity factors.  Finally, Chapter 8 provides a summary of the work, conclusions, 
and recommendations for future developments. 
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2 Pile Foundations 

2.1 INTRODUCTION 

Pile foundations are commonly used to support loads that are sufficiently heavy that they cannot 
be supported by shallow foundations without excessive settlement, lateral movement, or rotation.  
Piles are commonly used to support bridge foundations including individual piers and/or 
abutments.  They are occasionally used individually, but are more commonly driven in groups 
that are subsequently connected by a common pile cap to which structural loads are applied.  
This chapter provides a brief description of pile foundations and their design. 

2.2 SINGLE PILE BEHAVIOR 

Individual piles can support considerable vertical loads applied to its head when installed in 
competent soils.  An individual pile may be loaded axially, laterally, and or with an overturning 
moment.  A number of procedures by which the response of individual piles to various 
combinations of these loads are available. 

2.2.1 Axial (Downward) Load Response 

Piles are most commonly used to resist downward-acting vertical loads.  Such loads typically 
result from gravity and may be divided into dead and live loads.  These loads are resisted by a 
combination of bearing pressure on the base of the pile (tip resistance) and shear stress along the 
vertical sides of the pile (skin resistance).  Several procedures are available for estimating the 
capacity of a pile foundation – the capacity may be estimated based on the properties of the pile 
and soil in which it is embedded, on the basis of recorded driving resistance during installation, 
and on the basis of pile load tests.  These different procedures have different levels of accuracy 
and result in capacities with different levels of uncertainty. 

2.2.1.1 Capacity Estimation from Pile and Soil Properties 

Mobilization of pile capacity is a process that involves mobilization of the shear strength of the 
soil beneath and along the sides of the pile.  As such, procedures for estimation of pile capacity 
based on pile geometry and soil strength were developed in the early days of foundation 
engineering and are still used in practice today.  These procedures are generally divided into 
those addressing tip resistance, Qt, and skin resistance, Qs, so that the total capacity, Qult, is 
expressed as the sum 

 Qult  =  Qt + Qs (2.1) 



6 

The tip resistance of a pile is a function of the tip bearing pressure and the cross-sectional 
area of the tip of the pile.  The tip resistance can be estimated from deep bearing capacity theory 
using an expression of the general form 

 NqNcQ qvct
** '+=  (2.2) 

where c is the cohesive strength of the soil, q’v is the original vertical effective stress in the soil 
at a depth equal to that of the tip of the pile, and N c

*  and N q
*  are bearing capacity factors.  The 

bearing capacity factors are functions of the friction angle of the soil and the geometry of the 
failure surface; different researchers have proposed different failure mechanisms with different 
failure surface geometries, so a number of different expressions for N c

*  and N q
*  are available in 

the literature.   Skin resistance results from the shear strength of the interface between the 
perimeter surface of the pile and the adjacent soil.  The pile/soil interface is assumed to have 
strength characteristics similar to that of soil and is typically modeled as behaving according to 
the Mohr-Coulomb failure criterion.  The unit skin resistance, fs, therefore, can be described as 

 δσ tan'haσ cf +=  (2.3) 

where ca is the adhesion, σ’h is the horizontal effective stress, and δ is the pile-soil interface 
friction angle.  The adhesion can be estimated in different ways, the most common being by 
means of the so-called α method in which 

 ca = αc (2.4) 

where α is a factor that depends on c and c is the cohesive strength of the soil on the interface.  
Expressions for α can be found in numerous foundation design textbooks (e.g., Coduto, 2001; 
Salgado, 2007).  The horizontal effective stress, σ’h, is usually taken as being proportional to the 
vertical effective stress with the constant of proportionality depending on the type of pile; piles 
that displace a relatively large volume of soil (displacement piles), such as concrete piles, have a 
higher constant of proportionality than soils that displace relatively little soil (non-displacement 
piles) such as H-piles.  The interface friction angle is taken as being proportional to the soil 
friction angle, φ, with the constant of proportionality depending on the nature of the pile material 
(i.e., steel, concrete, timber, etc.). 

Estimates of axial load capacity based on pile and soil shear strength characteristics have 
been found to be significantly uncertain when compared against the results of pile load tests.  As 
a result, such capacity estimates have been treated with relatively low resistance factors in LRFD 
design procedures. 

2.2.1.2 Capacity Estimation from Driving Resistance 

The process of driving a pile into the ground requires at least momentary exceedance of the 
instantaneous pile capacity to allow penetration to occur.  This fact has been exploited in the 
development of several forms of pile capacity estimation procedures.  The earliest such approach 
resulted in the Engineering News-Record, or ENR, formula for allowable load 

 
)( CsFS

hWQ r
all +

=  (2.5) 
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where Wr is the weight of the hammer ram, h is the height of ram drop, FS is the factor of safety 
applied in an allowable strength design (ASD) format, s is the penetration per blow of the pile, 
and C is an energy loss term (note that Qall and Wr must be in the same units of force, and that h, 
s, and C must be in the same units of displacement).  A factor of safety of 6 was proposed for use 
with the original ENR formula. 

A number of other pile driving formulae have been proposed based on calibrations 
against various datasets of pile driving resistance and load test results.  The FHWA modified the 
original Gates (1957) formula to obtain the expression 

 100)10log(75.1 −= NEQult  (2.6) 

where E is the developed hammer energy (kinetic energy at point of impact) and N is the number 
of blows per inch of pile penetration.  Finding that the FHWA formula overestimated pile 
capacity at low capacity levels, Allen (2005a) developed the WSDOT pile driving formula, 
which can be expressed as 

 )10ln(6.6 NEFQ effult =  (2.7) 

where Feff is a hammer efficiency factor, E is developed energy at impact, and N is the 
penetration resistance expressed in hammer blows/inch averaged over the last four inches of 
driving.  The value of Feff is different for different types of hammer (e.g., 0.55 for air/steam, 0.37 
for open-ended diesel hammers with concrete and timber piles), 0.47 for open-ended diesel 
hammers and steel piles, and 0.35 for all piles driven with a closed-ended diesel hammer.  The 
WSDOT formula has also been expressed as 

 )10ln( NEFQult ⋅=  (2.8) 

where F is a factor depending on the same quantities as Feff.  Details on the development of the 
WSDOT pile driving formulae, and values of the various factors, can be found in Allen (2005a, 
2007). 

When compared with the results of pile load tests, pile capacity estimates from driving 
resistance have been shown to be inaccurate relative to other available capacity estimation 
procedures.  Although attractive in principle, the methods do not properly account for all factors 
affecting pile driving and combinations of pile-soil conditions that differ from those upon which 
the various driving resistance-based formulae are based.  The driving formulae do not account 
for pile setup, variability in rated pile driving efficiency, cushion characteristics (and changes in 
those characteristics during driving), pile flexibility, and dynamic effects.   

2.2.1.3 Capacity Estimation from Wave Equation Analysis 

Pile driving formulae assume the pile to be rigid so that it moves equally along its entire length.  
Piles are not rigid and the sharp nature of the contact between the hammer and the pile means 
that part of the pile may be moving while another part is not.  The flexibility of the pile, and its 
effect on driving, can be accounted for by simulating the driving process using wave equation 
analysis. 
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In a wave equation analysis, the pile is divided into a series of discrete masses connected 
by springs and dashpots of stiffness consistent with the modulus of elasticity and damping 
characteristics of the pile.  The masses are connected to the surrounding soil by nonlinear 
(frequently elastic-perfectly plastic) springs and dashpots that simulate the interaction between 
the pile and the soil during driving.  The characteristics of the springs and dashpots are related to 
the properties of the soil. 

The pile driving process is simulated by imposing a velocity pulse equal to that imposed 
on the pile by the hammer at the top of the pile.  The pulse travels as a wave down the pile with 
resistance being provided by inertia of the masses and relative pile-soil spring deflections.  If the 
resistance in the upper portion of the pile is high, the amplitude of the wave reaching the lower 
part of the pile will be smaller due to the work done by movement of the pile, as would actually 
occur in the field.  By computing the response of the discretized pile elements, the displacements 
and mobilized resistances of all elements can be computed for each blow of the hammer.  In this 
manner, the wave equation analysis simulates the actual driving process in a manner that makes 
its predictions of capacity more accurate than those of pile driving formulae which assume rigid-
body behavior of the pile.  Wave equation analyses also allow estimation of driving stresses 
under various conditions, which can aid in selection of pile driving hammers, cushions, etc. to 
optimize pile drivability.   

2.2.1.4 Capacity Estimation from Pile Driving Analysis 

A more sophisticated method of pile capacity estimation based on driving characteristics can be 
used when a pile is instrumented prior to driving.  By placing an accelerometer and strain gauge 
near the head of the pile, force and velocity signals can be computed from the measured strain 
and acceleration values.  The Case method makes certain assumptions about the manner in which 
the soil resistance is mobilized and uses a wave propagation approach to compute a total capacity 
from the amplitudes of the downward-traveling stress wave (just after the hammer strike) and the 
upward-travelling stress wave that reflects off the bottom of the pile.  By assuming that all of the 
capacity comes from the base of the pile, the dynamic component of the total capacity can be 
computed and subtracted from the total capacity, thereby yielding the desired static capacity.  
The Case method, therefore, provides an estimated capacity that reflects the driving conditions 
encountered by a specific pile in the field. 

The Case method makes simplifying assumptions about the pile-soil behavior in order to 
compute a pile capacity from stress wave amplitude measurements.  By combining the wave 
measurements with a wave equation analysis, the entire measured force and velocity waveforms 
can be used to identify a distribution of skin and tip resistances that would produce the same 
force and velocity waveforms.  The capacity predicted by this more sophisticated approach has 
been shown to match measured capacities more accurately than the previously described 
procedures.  A computer program, CAPWAP, is generally used to perform the waveform-
matching calculations. 

2.2.1.5 Capacity Estimation from Pile Load Test Results 

The most reliable procedure for estimating the capacity of a single pile is to perform a field load 
test on the pile at the site of interest.  Pile load tests involve applying an increasing vertical load 
to a pile and measuring the downward movement of the head of the pile.  Various forms of 
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instrumentation, such as strain gauges, may be installed on the pile to aid in the evaluation of 
load transfer, but are not always used.  The load-deflection behavior of the pile is measured and 
recorded.  In some cases, the pile is loaded to “failure” (i.e., unacceptably large displacements) 
and in other cases to some multiple of the previously estimated capacity as a “proof” test.  
Examples of load-deflection behavior measured in load tests of piles in clay and sand profiles are 
shown in Figure 2.1. 

 

 

Figure 2.1.   Load vs. vertical pile head settlement from load tests on piles in (a) clay and (b) 
sand (after Vijayvergiya, 1997). 
 

Determination of pile capacity from load test results is not always straightforward.  The 
results of many load tests show load-deflection diagrams with an initially linear portion followed 
by the onset of nonlinear behavior.  The slope of the load-deflection diagram decreases as the 
load level increases.  As shown in Figure 2.1, the slope drops more quickly for the load test in 
the clay profile than in the sand profile – this type of behavior is characteristic of deep 
foundations in clay and sand.  A pile in clay will generally exhibit a maximum resistance after 
which it cannot resist significant additional load and may, as in Figure 2.1(a), even suffer some 
reduction in resistance.  A pile in sand, on the other hand, will show a slowly increasing 
resistance to pile deflection levels that are well beyond those tolerable in typical applications.   

Because of this behavior, procedures for evaluation of pile capacity based on pile head 
settlement during load tests are commonly utilized.  The most common approach of this type is 
the Davisson procedure, which defines the point of “failure” (i.e., of capacity mobilization) as 
the intersection of an offset, sloping line with the load-deflection curve as shown in Figure 2.2.  
The line intercepts the settlement axis at a value related to the diameter of the pile and is inclined 
at a slope that reflects the elastic compression of the pile itself.  The failure point is used to 
define the failure load, Qf, and failure displacement, wf.  It should be noted that the failure load is 
displacement-related and should not be taken to imply that collapse, or plunging, of the pile is 
necessarily imminent.  
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Figure 2.2.   Schematic illustration of Davisson procedure for evaluating vertical capacity from 
pile load test. 
 

2.2.1.6 Mobilization of Capacity 

The preceding sections described a number of procedures by which the capacity of pile 
foundations can be estimated.  Since the capacity develops as the shear strength of the soil 
adjacent to and below the pile is mobilized, some level of pile displacement occurs as the soil 
strains in response to the stresses imposed on it.  As a result, the pile must move relative to the 
soil to mobilize its capacity. 

The amount of pile movement required to mobilize skin and tip resistance is different.  
Mobilization of skin resistance occurs as a result of straining in a thin zone of soil around the 
perimeter of the pile.  Since the zone is so thin, very little pile displacement (typically less than 1 
cm), is required to produce shear strains sufficient to mobilize the skin resistance.  Mobilization 
of the tip resistance involves deformation of the soil in a relatively large zone of soil beneath the 
tip of the pile.  In order to develop sufficient strain to mobilize the shear strength of the soil 
throughout this zone, a relatively large amount of pile tip displacement, typically on the order of 
10% of the pile diameter, is required. 

The mobilization of skin resistance for pile foundations can be modeled using the t-z 
method.  In a manner analogous to the representation of lateral resistance by p-y curves, the 
development of skin resistance can be modeled by t-z curves that relate unit skin resistance to 
pile displacement.  A number of researchers have proposed procedures for developing t-z curves.  
According to Vijayvergiya (1997), the mobilized skin resistance in sands and clays can be 
expressed by  











−=

cc z
z

z
zff 2max          (2.9) 
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where f is the unit skin friction, fmax is the maximum unit friction obtained from Equation 2.3, 
and zc is the critical displacement corresponding to fmax.  The critical displacement, zc, is usually 
between 0.2 and 0.3 inches for both sand and clays.  A normalized t-z curve based on this 
approach is shown in Figure 2.3. 

 

Figure 2.3   Normalized t-z curve for clay and sand (after Vijayvergiya, 1997) 
 

The mobilization of tip resistance can be modeled by discrete elements whose load-displacement 
behavior is described by Q-z curves.  Vijayvergiya (1997) proposed that the mobilized tip 
resistance in sands and clays could be expressed by a cube-root relationship up to the point of 
full capacity mobilization, i.e., 

        (2.10) 

where q is the tip resistance for a value of z/zc, Qmax is the maximum tip resistance obtained from 
Equation 2.8, and zc is the critical displacement corresponding to Qmax.  The critical 
displacement, zc, is approximately 3% to 9% of the diameter for clays and sands (or 0.04D for 
clay to 0.06D for sand).  A normalized Q-z curve is shown in Figure 2.4. 

 

 

 Figure 2.4   Normalized Q-z curve for clay and sand (after Vijayvergiya, 1997) 
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2.2.2 Axial (Uplift) Load Response 

Piles may also be subjected to upward-acting loads.  For bridge foundations, this situation 
normally occurs in piles near the edge of a group that is subjected to high overturning moments.  
The effect of the overturning moment is to increase the downward-acting loads on one side of a 
pile group while pulling upward on the piles on the opposite side of the group.  When 
overturning moments are acting in two orthogonal directions, piles in the corners of a pile group 
may be subjected to significant upward-acting loads.  If the upward-acting load is high enough 
and of long enough duration, the pile can be pulled out of the soil.  Under earthquake loading 
conditions, when the overturning moments, and hence upward-acting loads, are transient, the 
momentary exceedance of pullout capacity will lead to increased rotation of the pile cap. 

The capacity of a single pile to upward-acting loads is derived solely from its skin 
resistance.  The bearing pressure due to the upward load would be negative and, although some 
suction could exist temporarily between the bottom of the pile and the soil immediately below it 
if the soil is saturated, it cannot be relied upon for design purposes.  As a result, the pullout 
capacity is usually computed as the skin friction capacity reduced by a factor to account for the 
direction of loading. 

2.2.3 Lateral Load Response 

Piles can also be subjected to static and dynamic lateral loads.  Static lateral loads may result 
from the structural configuration or the presence of sloping ground.  Dynamic lateral loads can 
come from wind, traffic, water, and collisions in addition to earthquakes.  Because piles are so 
much more flexible in bending than when subjected to axial loading, lateral load capacity is 
much more difficult to predict using the types of limit analysis approaches that have proven 
useful for prediction of axial capacity. 

2.2.3.1 Lateral Load Capacity 

Early analytical methods for designing laterally loaded foundations assumed that the foundations 
were perfectly rigid (i.e., infinite flexural stiffness, EI).  Operating under this assumption, the 
required depth of embedment for lightweight foundations, such as those for streetlights or 
highway signs, can be calculated using the following equations according to the Uniform 
Building Code [UBC 1806.8.2] and the International Building Code [IBC 1805.7.2].   

For the free-head condition, the minimum depth of embedment, Dmin, can be calculated 
by 

 







+=

A
hAD 36.41

2min         (2.11) 

where 
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1

34.2
=  

For fixed-head conditions, the required depth of embedment can be calculated as 
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BS
VhD

3
min

25.4
=          (2.12) 

where V is the applied shear load, h is the vertical distance from the ground to the point of 
application, B is the foundation diameter, S1 is the allowable soil pressure at z = Dmin/3, S3 is the 
allowable soil pressure at z = Dmin, and z is the depth below the ground surface. 

For many foundations, such as those that include long slender piles, the foundation does 
not behave perfectly rigidly, and a simple rigid analysis which neglects flexural bending in the 
pile is not accurate.  Instead, the soil interaction problem is often modeled using non-rigid 
analytical techniques to model the lateral behavior of piles.  The evaluation of the lateral capacity 
of piles involves soil-structure interaction in which the responses of both the pile and the soil 
must be evaluated in the same analysis.  The behavior of the pile depends on soil resistance and 
soil resistance depends on the behavior of the pile. 

2.2.3.2 Pile-Soil Interaction 

Evaluation of the lateral load-deflection behavior of a pile foundation must consider the flexural 
rigidity of the pile, the response of the soil, and soil-pile interaction effects.  Finite element 
methods that account for these aspects are used to analyze the pile response.  Complete 
evaluation requires the use of (3-D) finite element analyses that include advanced constitutive 
models to capture soil response and robust contact elements to capture interaction effects.  
Complete finite element analyses can be computationally expensive.  Instead, a simpler and more 
commonly used approach to model soil resistance is to use p-y method, also known as the Beam-
on-Nonlinear-Winkler-Foundation (BNWF) method.  Though simple, this method has worked 
well for predicting pile response and can be applied to seismic soil-pile interaction problems.   

Beam-on-Nonlinear-Winkler-Foundation (BNWF) Models 

In a typical BNWF model, as shown in Figure 2.5(a), the soil resistance is modeled by a beam 
supported by a series of independent horizontal nonlinear springs distributed along its length.   

During an earthquake a pile will be subjected to both kinematic and inertial loads.  
Kinematic loads are imposed along the length of the pile by the displacement of the surrounding 
soil, and inertial loads are imposed on the top of the pile by the vibration of the structure.  The 
soil motion near the pile, where nonlinear, inelastic soil-pile interaction occurs, is called near-
field motion.  The soil motion that occurs far enough from the pile to be uninfluenced by 
nonlinear, local interaction is called far-field or free-field motion.  In a dynamic BNWF analysis, 
the free-field motion is provided by the soil column and the soil-pile interaction occurs at the 
interface springs.  As shown in Figure 2.5(b), this type of analysis is called in a coupled analysis 
because the soil and pile are coupled together by interface springs. 
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(a)      (b) 

 

Figure 2.5   Static and dynamic BNWF Models:  (a) BNWF Model (after Shin, 2007), and 
(b) Dynamic BNWF model (after Boulanger et al., 1999) 
 

p-y Method of Analysis 

The BNWF method is commonly called the p-y method, where p is the soil force per unit length 
and y is the lateral pile deflection relative to the soil movement.  The BNWF model uses 1D 
structural elements to model the pile, and a series of independent nonlinear springs whose 
characteristics are based on p-y curves to model the soil.  1-D, 2-D, or 3-D finite difference 
analyses of the model can be performed.  Figure 2.5 illustrates the model for a 1D analysis.  
Accurate p-y curves are a critical part of the definition of the BNWF model.  For a model in 
which a pile is subjected to monotonic and cyclic loads at the pile head, p-y curves based on the 
initial stiffness and ultimate resistance of the soil are commonly used.   

p-y Curves 

Relationships between p and y can be developed based on field tests, laboratory model tests, and 
analytical solutions.  The lateral response of piles can be described by combining these p-y 
relationships together with beam elements in BNWF models.  The pile displacement and soil 
resisting force per unit length can be back-calculated from measured or calculated bending 
moments by double-differentiating and double-integrating the governing equilibrium differential 
equation.  The basic beam-on-elastic-foundation equation is represented by 

 02

2

2

2

=−+ p
dz

ydQ
dz

Md         (2.13) 
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where M is the pile bending moment and z is depth.  For the case of a pile with no vertical load, 
i.e., Q = 0  

 )(2

2

zM
dz
dp =           (2.14) 

Assuming linear bending behavior, 

 2

2

dz
ydEIM =           (2.15) 

so 

 4

4

dz
ydEIp =           (2.16) 

where EI is the flexural rigidity of the pile.  When a lateral load test is performed, pairs of strain 
gauges can be used to measure the curvature, φ, at any point during the test.  Therefore, values of 
p and y can be computed as  

 2

2

dz
dEIp φ

=           (2.17) 

and 

 ∫∫= dzy φ           (2.18) 

p-y Curves for Sand, Stiff Clay, and Soft Clay 

Several different p-y criteria have been proposed for sand and clay.  The main components of 
each criterion are the initial stiffness and ultimate soil resistance, which typically increase with 
depth and depend on soil type, loading condition, and location of groundwater.  Figures 2.6 and 
2.7 show static and cyclic p-y curves from sand and stiff clay profiles.  For both sand and stiff 
clay, the cyclic p-y curves are softer and the ultimate lateral soil resistance is lower than for static 
loading.  The main difference between the response of sand and stiff clay is the ultimate 
resistance in stiff clay decreases after a peak value has been reached.   
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 (a) (b) 

  

Figure 2.6   Back-calculated p-y curves for sand from field tests: (a) static, and (b) cyclic (after 
Reese et al., 1975) 

Cyclic loading causes a softening of the p-y curves as shown by the p-y curves in Figure 
2.8(b).  Pile foundations subjected to cyclic loading in soft clays may have a reduced frictional 
capacity due to a loss of contact between the pile and the soil at shallow depths.  This loss of 
contact is shown by the horizontal portion of the curves where resistance goes to zero.  As shown 
in Figure 2.8(a), gaps can form between the pile and the upper portion of a clay layer.  This 
behavior is not observed for sands. 

(a) (b) 

  

Figure 2.7   Back-calculated p-y curves for stiff clay from field tests: (a) static, and (b) cyclic 
(after Reese et al., 1975) 
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(a) (b) 

 
 

Figure 2.8   Cyclic response of a rigid pile in soft clay: (a) test setup, and (b) cyclic p-y curves 
of clay (after Matlock, 1970) 

From many experimental observations, several methods for constructing p-y curves have 
been made, e.g. Matlock (1970) for soft clay, Reese et al. (1974) for sand, Reese et al. (1975) for 
stiff clay below the ground water table, Reese et al. (1981) for stiff clays above the ground water 
table.  In this research, the construction of p-y curves was performed according to procedures 
outlined in API (1993).   

Initial Stiffness of p-y Curves 

For cohesionless soils, the initial stiffness can be expressed indirectly by a reference deflection, 
y50, taken as that corresponding to one-half the ultimate soil resistance.  The API (1993) method 
for sand is based on Reese’s sand criteria, but uses a smooth hyperbolic function to construct p-y 
curves.   





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where A is a factor to account for cyclic or static loading evaluated as 
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and pult is the ultimate bearing resistance at depth, z, and k is the initial modulus of subgrade 
reaction determined as a function of relative density.  After calculating the ultimate resistance 
and rearranging Equation 2.17, y50 can be obtained from 
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For cohesive soils, 50y  is usually defined as 

 Dy 5050 5.2 ε=           (2.22) 

where 50ε is the strain corresponding to one-half the undrained strength and D is the pile 
diameter.  Typical values for 50ε  are given in Tables 2.1 and 2.2. 

Table 2.1.   Representative values of  for normally consolidated clays 
(Peck et al., 1974 – after Reese and Van Impe, 2001) 

 

Clay 
Average undrained 

shear strength, 
(kPa) 

50ε  

Soft clay < 48 0.020 
Medium clay 48 – 96 0.010 

Stiff clay 96 – 192 0.005 

Table 2.2.   Representative values of  for overconsolidated clays 
(after Reese and Van Impe, 2001) 

 
Average undrained 

shear strength, 
(kPa) 

50ε  

50 – 100 0.007 
100 – 200 0.005 
200 – 400 0.004 

 

In many cases of static and cyclic loading, accurate definition of the initial stiffness is not 
critical (Reese and Van Impe, 2001).  When a pile is subjected to lateral loading, most of the 
reaction occurs in the near surface soils.  In this shallow region, the actual resistance mobilized is 
usually very close to or at the ultimate resistance and therefore, beyond the displacement at 
which initial stiffness could have an effect.  For dynamic loading, however, the stiffness at low 
deflection levels can be more important. 

Ultimate Resistance of p-y Curves 

The ultimate soil resistance, pult, is calculated according to the idealized failure mechanism 
assumed to develop in the soil.  For near-surface p-y curves, wedge failure, in which a three-
dimensional sliding surface develops (Figure 2.9), is considered.  For deeper p-y curves, below a 
critical depth, flow failure occurs in which a two-dimensional flowing soil failure mode around 
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the pile in a horizontal plane is considered.  In both cases, the ultimate resistance is a function of 
pile diameter, depth, and soil strength parameters. 

 

 

Figure 2.9.   Shape of passive wedge controlling ultimate resistance at shallow depths 

For cohesionless soils, the ultimate resistance is the smaller of the ultimate resistance at 
shallow depths, Pus, and the ultimate resistance at deeper depths, Pud.  According to API (1993) 
procedures, the ultimate resistance at shallow depths (through the wedge mechanism) can be 
calculated as   

 ( ) zDCzCPus '21 γ+=          (2.23) 

and the ultimate resistance at deeper depths (from the flow mechanism) can be calculated as 

 zDCPud '3 γ=           (2.24) 

where C1, C2, and C3 are coefficients determined from API (1993) charts as shown in Figure 2.10 
where values are correlated to angle of internal friction of the soil.   
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Figure 2.10   Coefficients as  functions of friction angle (API, 1993) 

For soft clays,  pult  increases from 3c to 9c as depth increases from 0 to , where 

           (2.25) 

where c is the undrained shear strength, and J is a dimensionless empirical constant with values 
ranging from 0.25 to 0.5.  The ultimate resistance is calculated by the smaller of the values given 
by the following equations.  For shallow depths, when , the ultimate resistance can be 
calculated as 

          (2.26) 

For deeper depths, when , the ultimate resistance can be calculated by 

           (2.27) 

Figure 2.11 illustrates the mobilization of the ultimate lateral resistance with depth for a 
laterally loaded pile in sands and clays.  For sands, the critical depth, , represents the point at 
which the failure mechanism transitions from wedge failure in shallow soils to flow failure in 
deeper soils. 
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Figure 2.11   Comparison of the ultimate soil resistance of soft clay (after Matlock, 1970), and 
sand (Reese et al., 1974) 

2.2.4 Pile Head Moment Response 

Piles can also be subjected to moments applied at the ground surface, usually in conjunction with 
lateral loads applied at some height above the ground surface.  The response of a single pile to 
pure moment loading (moment with no lateral or vertical load) involves rotation at the ground 
surface that produces lateral movements of the pile below the ground surface.  Below a peak 
lateral movement, the amplitude of the lateral movement decreases with depth below the ground 
surface.  The mechanism of resistance to rotation, therefore, has components related to the 
flexural stiffness of the pile itself, and to the lateral load (e.g., p-y) resistance of the soil.  When a 
pile foundation is expected to subjected to large moments, a pile group will often be used to 
resist those moments more efficiently. 

2.3 PILE GROUP BEHAVIOR 

For large structures, column loads are often larger than the available resistance of a single pile.  
In such cases, the loads are generally supported by groups of piles connected by a common pile 
cap.  The pile cap distributes the column loads to the individual piles, which then transmit the 
loads to the supporting soil.  The behavior of a pile group can be influenced by the spacing of the 
piles within the group.  The use of closely-spaced piles reduces the cost of the pile cap, but can 
cause the stressed zones of soil associated with the individual piles to interact with each other 
leading to a reduction in pile group capacity. 

2.3.1 Vertical Load Response 

The basic nature of pile group response to vertical loading is similar to that of a single pile.  Each 
pile within a pile group is loaded vertically by the pile cap.  Under purely vertical loading, the 
distribution of loads to the individual piles depends on the stiffness of the pile cap, but it is 
common to assume that the pile cap is sufficiently stiff that all piles are loaded equally.   
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Computation of pile group capacity requires consideration of group failure mechanisms.  
With widely-spaced piles, failure will generally be initiated by failure of an individual pile, either 
due to local weakness of the soil surrounding and beneath that particular pile or due to non-
uniformly high load applied to that particular pile.  In this case, group capacity, Qgroup, is 
generally taken as the sum of the capacities of the individual piles within the group multiplied by 
a pile group efficiency factor that depends on the configuration (e.g., pile-to-pile spacing) of the 
group, i.e., 

∑
=

=
N

i
igroup QQ

1
η          (2.28) 

where η is the pile group efficiency and Qi is the capacity of the ith of N piles comprising the 
group.  A number of procedures for estimating pile group efficiency are available; perhaps the 
best-known is the Converse-Labarre formula 
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where n and m are the numbers of piles in two orthogonal directions, )/(tan 1 sB−=θ  in degrees, 
B is pile diameter, and s is pile center-to-center spacing. 

For very closely spaced piles, it is possible that the soil between the piles moves with the 
piles upon loading.  If a pile does not move relative to the surrounding soil, it cannot develop 
skin resistance so the capacity of the group can be markedly lower than the sum of the individual 
pile capacities.  In such cases, the capacity of the pile group can be estimated by assuming a 
block failure mechanism in which the zone of soil and pile bounded by the outer dimensions of 
the pile group is assumed to act as a rigid block.  The block failure mechanism is only significant 
for pile groups whose tip resistance is low relative to skin resistance – in sands, for example, the 
bearing capacity at the base of a large rigid block would be so large that the failure mechanism 
would likely never develop.   

2.3.2 Lateral Load Response 

When subjected to the same lateral load, a pile that is a member of a group will respond 
differently than a single isolated pile.  Typically, a pile group will deflect more and resist less 
force per pile than a single pile.  The pile group response depends on the individual pile capacity, 
pile spacing, group configuration, pile installation method, pile cap resistance, pile cap 
connection, and other factors.  Of these, pile spacing and pile cap resistance are the most 
significant.  Methods for accounting for pile spacing and cap resistance are discussed in the 
following sections.  

When loaded in the lateral direction, the difference in the response of a single pile and a 
group of piles can be significant.  Typically, a pile group will deflect more and resist less force 
per pile than a single pile.  The difference in the pile group response can be attributed to three 
main aspects: the interference that occurs through the supporting soil between adjacent piles of 
the pile group, the additional rotational resistance provided by the restraint of the pile cap 
connection and vertical skin resistance of the piles, and the additional lateral resistance provided 
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by the pile cap (when buried).  The overall effect of these differences must be taken into 
consideration when designing pile foundations to resist lateral loads.    

2.3.2.1 Group Effect 

In a group a pile is less efficient due to pile-soil-pile interaction effects.  When a pile is loaded 
laterally a shear zone develops within the adjacent soil.  When piles are closely spaced together, 
interference between shear zones of adjacent piles (Figure 2.12) causes a loss of soil resistance 
and, consequently, greater deflection for a given lateral load per pile.  This reduction of soil 
resistance due to the overlap of shear zones is known as shadowing.  The degree to which 
shadowing reduces capacity of the pile depends primarily on pile spacing and pile location 
within the group.   

 

Figure 2.12   Soil zones of influence for a laterally loaded pile group 

Shadowing affects piles that are in line with the direction of loading and causes the 
leading pile to take a greater load than its trailing piles.  For example, the pile group in Figure 
2.13 can be divided into three rows.  When the lateral load acts from left to right, the leading row 
is the first row on the right (labeled Row 1).  The rows following the leading row, from right to 
left, are typically described as the 1st trailing row, the 2nd trailing row, and so on.   

 

Figure 2.13   Schematic of pile alignment in a group 



24 

The p-y method can be easily adapted to approximate group interaction effects.  To 
capture the response of piles in a group, group efficiency factors are included in the analysis and 
act to reduce the ultimate lateral resistance.  A popular method to account for “shadowing” is to 
include p-multipliers (Brown et al., 1988).  Researchers have performed experimental tests on 
pile groups varying the number of rows, number of piles per row, pile spacing, soil type and 
density to define these p-multipliers.  Mokwa (1999) observed that pile spacing is the dominant 
factor affecting pile group interaction.  Closer spaced piles develop greater interference and a 
greater reduction in resistance.  Mokwa (1999) discovered that group effects for in-line 
alignments, were negligible when the pile spacing is greater than 6 pile diameters.  Figure 2.14 
shows p-multipliers for leading and trailing rows developed by Mokwa (1999).  

 

 

Figure 2.14    p-multipliers design curves (Mokwa, 1999) 

For static lateral loading, accounting for the difference in response using -multipliers is 
critical.  For dynamic lateral loading where the lateral load oscillates and leading rows become 
trailing rows (and vice versa), accounting for group effects is not as critical. 
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2.3.3 Overturning Moment Response 

A pile group subjected to an overturning moment will resist that moment primarily through axial 
resistance developed in the piles.  In much the same manner as bearing pressures vary across the 
face of a shallow foundation subjected to an overturning moment, the vertical loads in a pile 
group subjected to an overturning moment also vary with position.  For an arbitrary pile located 
at position xi, yi from the centroid of  a pile group subjected to vertical load, Q, and overturning 
moments, Mx and My, the axial load transmitted from a rigid pile cap would be given by 
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Note that the effect of the overturning moments will be to increase the downward-acting 
force on piles at positive x- and y-values, and to decrease that force on piles at negative x- and y-
values.  If a pile group is subjected to a relatively low vertical load, Qgroup, and high overturning 
moments, some of the piles may be loaded in tension.  Pullout failure can occur when uplift 
loading exceeds the available uplift resistance. 

2.4 PILE CAP RESISTANCE 

Deep foundations that support bridges often consist of groups of piles connected by concrete pile 
caps.  These pile caps can be massive and are often buried.  They can contribute significantly to 
the rotational and lateral resistance of the pile group system and, therefore, should be accounted 
for in design.  In some cases, the lateral resistance provided by the pile cap can be as much as 
50% of the total lateral resistance (Mokwa, 1999; Beatty, 1970). 

The pile cap strongly affects the rotational capacity of the pile group.  When a lateral 
force is applied to a pile group, the tendency of the group to rotate is resisted by vertical soil 
resistance along the piles and at the pile tips as shown in Figure 2.15.  Pile axial resistance can 
therefore significantly affect the rotational resistance of the pile group.   

 

Figure 2.15   Schematic of rotational soil resistance due to pile cap rotation (after Shin, 2007) 
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The pile cap strongly affects the lateral capacity of the pile group.  Passive earth pressure 
on the front of the cap, sliding resistance on the bottom and sides, and active earth pressure on 
the back contribute to the lateral resistance.  Compared to the passive resistance, however, 
sliding and active resistance are usually quite small and are commonly ignored.     

Mokwa (1999) developed a method for computing cap resistance based on passive earth 
pressures.  Three components contribute to the passive earth pressure: soil weight and friction, 
soil cohesion, and surcharge.  The passive earth pressure on the face of the cap can be calculated 
by  

 pcspcpcp KHqKcHKHE ++= 2
2
1 2γ       (2.31) 

where pK  is determined from log spiral theory, qs is the surcharge,  is the unit weight, and cH  
is the height of pile cap.   

Equation 2.31 gives the resulting earth pressure force if the passive region is two-
dimensional.  Considering a three-dimensional passive region, the resulting ultimate earth 
pressure force for cohesionless soils can be calculated by  

bREp pult =           (2.32) 

where b is the pile cap width and R is a factor that accounts for the three-dimensional geometry 
of the passive zone.  In a real pile cap, as shown in Figure 2.16, the passive zone extends beyond 
the edges of the front face of the pile cap.  

 

Figure 2.16   2-D and 3-D lateral earth pressure wedges 

To investigate the three-dimensional effect, Ovesen (1964) conducted model tests on 
anchor blocks embedded in granular soils and developed empirical expressions for predicting the 
three-dimensional resistance.  From Ovesen (1964), a three-dimensional modifying factor, R, can 
be calculated as 
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where B=1 for a single pile cap, E = 1-H/(zc+H), and zc is the embedment depth from the ground 
surface to the top of the pile cap. 

For cohesive soils (φ = 0), the ultimate pressure force is calculated as 
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where α is the adhesion between the cohesive soil and the wall.  

In this method, only the passive resistance on the front of the cap is considered.  The 
contribution of the frictional resistance on the sides and bottom of the cap were not accounted for 
because their magnitudes are insignificant relative to the passive resistance. 

2.5 DYNAMIC RESPONSE OF PILE FOUNDATIONS 

Pile foundations are also expected to resist dynamic loads from different sources that produce a 
wide range of amplitudes, frequency contents, and durations.  When subjected to dynamic 
loading, pile groups will respond dynamically with some pattern and amplitude of deformations.  
In most cases, dynamic loading is of relatively low amplitude, so the stiffness and damping 
characteristics of the foundation will control its deformations.  A considerable literature on the 
dynamic response of pile foundations exists and charts for estimation of pile impedance, a 
quantity that accounts for both stiffness and damping characteristics, are readily available.  If a 
pile cap is rigid, the piles can be replaced by springs and dashpots arranged in such as way as to 
model the horizontal, vertical, and rotational impedance of the foundation (Figure 2.17). 

 

 

Figure 2.17.   Schematic illustration of equivalent springs and dashpots for modeling 
vertical/horizontal/rotational impedance of pile group. 

For the purposes of soil-structure interaction analysis, the dynamic stiffness of the 
foundation is of primary interest.  The dynamic stiffness of a single pile is usually expressed as 
the product of its static stiffness and a dynamic stiffness factor.  Piles themselves are generally 
quite stiff when loaded axially, so the entire pile tends to move vertically in phase and by 
essentially the same amount.  When loaded laterally, however, piles can be quite flexible and 
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will tend to deflect more near the point of load application than farther away.  For most pile 
dynamics problems, the loads are applied at the head of the pile so only a portion of the pile, 
usually termed the “active length” deflects significantly.  The active length depends on the 
relative flexural stiffness of the pile and soil and is usually on the order of 10- TO 20-pile 
diameters (Randolph, 1981; Gazetas, 1991). 

The dynamic response of pile groups is complicated.  Piles tend to interact with each 
other under dynamic as well as static loading.  The type of elastic solutions from which 
impedance functions are typically derived show that the individual piles within a group produce 
stress waves that emanate from their perimeters as they move laterally with respect to the 
surrounding soil.  When linear elastic behavior is assumed, these waves can push an adjacent pile 
on one side and pull an adjacent pile on the other side.  The result is a complex set of interactions 
that depend on frequency, pile spacing, number of piles, and other factors.  Examples of the 
dynamic stiffness and damping behavior of 2x2, 3x3, and 4x4 pile groups are shown in Figure 
2.18. 

 

 

Figure 2.18.   Dynamic stiffness and damping behavior of pile groups subjected to (a) lateral 
load at pile cap, and (b) overturning moment applied to pile cap.  Stiffness 
expressed as ratio of dynamic stiffness to static stiffness (after Stewart and 
Mylonakis, 2011) 

A number of chart-based procedures of the type illustrated in Figure 2.17 are available 
for estimation of pile group stiffness.  The computer program, DYNA4 (Novak et al., 1993) uses 
elastic solutions to develop frequency-dependent stiffness and damping coefficients for 
arbitrarily-shaped pile groups.  DYNA4 can provide a 6x6 impedance matrix that defines the 
stiffness and damping characteristics of a pile group with respect to three translational and three 
rotational degrees of freedom.  These calculations generally assume linear, viscoelastic soil 
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behavior but can be used in an iterative, equivalent linear format to approximate nonlinear 
behavior. 

2.6 SUMMARY 

The response of individual piles to seismic loading is influenced by the characteristics of the pile, 
the soil, and the structure supported by the pile.  The pile can loaded by forces from the structure, 
which include vertical and horizontal loads and moments, or by movement of the soil along the 
length of the pile.  As the pile moves in response to these loads, it develops resistance by 
mobilizing the shear strength of the soil that surrounds it.  Several analytical techniques have 
been developed to model the three-dimensional soil-structure interaction problem.  The most 
commonly used of these involve modeling the pile as a Winkler beam with the soil modeled by 
discrete, independent springs.  The load-resistance behavior of these springs can be expressed 
graphically in the form of p-y curves for lateral loading and response, t-z curves for mobilization 
of skin resistance in response to axial loads, and Q-z curves for mobilization of tip resistance due 
to axial loads.   

The response of pile groups to seismic loading is even more complex than the response of 
individual piles.  Within a group, piles can interact with each other in a complicated manner that 
depends on the characteristics of the piles and the soil, and on the configuration of the group.  
These interactions can be addressed using group interaction factors developed from elastic 
solutions for relatively low-amplitude loading, but nonlinearity and inelasticity at high levels of 
loading make their use more difficult.  Reduction factors can be applied to p-y, t-z, and Q-z 
curves to approximate group effects under stronger levels of loading. 
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3 Approaches to Seismic Response and 
Design 

3.1 INTRODUCTION 

Earthquake engineers are frequently required to evaluate the seismic performance of existing 
structures or to design new structures to achieve some desired level of performance.  A number 
of different approaches to these activities have been taken over the years.  With the increasing 
availability of high-speed computers, sophisticated analysis software, and case history data 
against which analytical tests can be calibrated, the engineer’s ability to predict the response of 
soil-foundation-structure systems is much greater than in the past. 

Previous notions of successful performance as the avoidance of collapse are giving way 
to more refined measures of performance at damage levels well short of collapse.  Multi-level 
design procedures have been used for a considerable period of time and have been formalized in 
different ways.  For bridge design, load and resistance factor (LRFD) principles have been used 
to establish design requirements for different limit states – serviceability, ultimate, and extreme.  
In recent years, more explicit consideration of performance has been encapsulated in 
performance-based earthquake engineering, which has the potential to provide more consistent 
and rational designs in areas of widely-varying seismicity. 

This chapter presents a review of uncertainties that can affect seismic design, and 
describes how they are accounted for in allowable stress, LRFD, and performance-based 
frameworks. 

 

3.2 SEISMIC PERFORMANCE  

The development and implementation of performance-based design requires that earthquake 
professionals be able to define performance in terms that are understandable and useful to the 
wide range of technical and non-technical professionals who make decisions on the basis of 
performance predictions.  The term “performance” can mean different things to different people.  
To a seismologist, spectral acceleration may be a good descriptor of the potential performance of 
a building subjected to earthquake shaking.  To an engineer, plastic rotation would likely be a 
better descriptor of performance.  To an estimator preparing a bid for repairs, crack width and 
spacing could be more useful measures of performance.  Finally, to an owner, the economic loss 
associated with earthquake damage could be the best measure of performance. 
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These different notions of performance lead to an intuitive way of viewing the earthquake 
process.  As illustrated in Figure 1, an earthquake produces ground motion, which leads to 
dynamic response of a structure.  That response can lead to physical damage, and that damage 
leads to losses.  The prediction of losses, therefore, requires the ability to predict ground motion 
intensity, system response, and physical damage.  If losses are the ultimate measure of, the 
performance evaluations in an ideal implementation of performance-based design should focus 
on predicting losses as accurately, consistently, and reliably as possible.  The following sections 
describe the progression of events that lead to earthquake losses. 

 

 

 

Figure 3.1.   Schematic illustration of the progression that leads to earthquake losses. 

3.2.1 Ground Motion 

The rupture of crustal rock that produces an earthquake releases energy that propagates outward 
from the fault in all directions.  As the energy spreads out over a greater and greater volume, its 
flux (energy per unit area) decreases and it is refracted, or scattered, by inhomogeneities in the 
crust.  Some of the elastic wave energy is absorbed anelastically by the crustal material along the 
path from the fault to the site.  At the site, the local geology further modifies the wave field, 
influencing the amplitude, frequency content, and duration of the ground motion. 

Earthquake engineers characterize the intensity of ground motions using intensity 
measures (or IMs) such as peak acceleration, spectral acceleration, Arias intensity, etc.  The 
response of a compliant system can vary dramatically from one earthquake to another and from 
one location to another in the same earthquake, because of differences in those ground motion 
characteristics.  The most useful ground motion parameters are those to which the response of 
the system of interest is most closely related.  The optimum parameters for predicting response 
should be recognized as being different for different types of structures and different types of 
response.  In bridge design, spectral acceleration is the most commonly used IM, and spectral 
acceleration at the fundamental period of the bridge, Sa(To), is likely the single most useful 
predictor of response. 

3.2.2 System Response 

Structures, whether comprised of steel, concrete, or soil, have mass and are compliant, and 
therefore respond more strongly at some frequencies than others.  They exhibit generally linear 
behavior at very low levels of loading but can become highly nonlinear and inelastic at higher 
levels of shaking.  Their stiffnesses can change dramatically from the beginning of an earthquake 
to the end and even, as in the cases of liquefiable soils and damaged reinforced concrete 
elements, within a given cycle of loading.  Response to earthquake loading depends on the mass, 
geometry, stiffness, and damping characteristics of the structure and its foundation, and on the 



33 

amplitude, frequency content, and duration of the ground motion.  Response can be expressed in 
terms of forces and stresses or displacements and strains, and are frequently characterized by 
engineering demand parameters, or EDPs.  When the response is excessively high, damage will 
occur.  In order to accurately predict the damage associated with structural response, it is 
necessary to identify the measures of response that are most closely related to damage, and to be 
able to predict the response caused by earthquake ground motion.  In bridge foundation design, 
deflections (displacements and/or rotations) have historically been the most useful measures of 
response. 

3.2.3 Physical Damage 

The response of a structure may or may not result in physical damage depending on the 
structure’s capacity to resist damage.  The capacity may be viewed as a level of response beyond 
which some level of physical damage can be expected to occur.  Many different types of damage 
can occur during an earthquake – some can be related to the structure itself, some to physical 
systems within the structure, and some to the contents of the structures.  Consider a bridge, for 
example, subjected to earthquake shaking of various intensities.  At low levels of shaking, the 
bridge may respond essentially elastically with light hairline cracking and negligible damage 
occurring.  At stronger levels of shaking, cover concrete can spall and expansion joint seals may 
fail.  At even stronger levels of shaking, columns/girders/beams can crack, joints can fail, 
foundations can rock and settle, and rebar can buckle.  At very strong levels of shaking, ground 
movement can occur, foundations can fail, welded connections can fracture, columns can lose 
capacity and collapse can occur – such severe physical damage can lead to extremely high losses.  
In order to predict the losses associated with these and other forms of physical damage, it is 
necessary to identify the specific form(s) of physical damage, quantified by damage measures, or 
DMs, that contribute most strongly to the losses of interest, and to be able to predict the physical 
damage associated with the response of the system of interest. 

3.2.4 Losses 

Physical damage to structures and their contents result in losses.  Losses can have many 
components – deaths and injuries, repair and replacement costs, and loss of utility for extended 
periods of time.  Decisions regarding risk reduction through retrofitting, insurance protection, 
etc. are usually made on the basis of expected losses, so those losses are often characterized by 
decision variables, or DVs. 

The prevention of death and serious injury has been the fundamental basis of seismic 
design since it was first attempted.  The economic losses associated with earthquake damage are 
many, but can be divided into two categories – direct and indirect losses.  Direct losses are those 
associated with the repair and/or replacement of structures and facilities damaged by earthquake 
shaking.  Indirect losses include those associated with delayed or lost business, environmental 
damage, compromised infrastructure, etc.  Downtime, which refers to the period of time in which 
structures or facilities are unavailable for their intended use, is among the most important of 
indirect economic losses and can produce, for critical systems, losses that far exceed direct 
losses.  The loss of a major bridge in a non-redundant system, for example, can lead to 
inefficiencies in moving goods, services, and people that have very real, and very high, economic 
consequences. 
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3.3 UNCERTAINTY IN GEOTECHNICAL DESIGN 

A design procedure should ensure some adequate margin of safety against failure.  This 
objective, which requires a balance of safety and cost, is best accomplished with careful 
consideration of the sources and levels of uncertainty in the design problem.  

Geotechnical design, in comparison with many other engineering disciplines, must deal 
with numerous sources of significant uncertainty and, as a result, higher margins of safety have 
historically been incorporated in geotechnical design.  The following sections discuss the 
primary sources of uncertainty in capacity and demand with respect to geotechnical engineering 
problems.  

3.3.1 Sources of Uncertainty in Demand (Loading) 

For typical geotechnical engineering applications, the uncertainty in capacity is much greater 
than the uncertainty in the demand.  However, in the case of rare but extreme loading, such as 
that produced by earthquakes, the uncertainty in demand can be great. 

The primary loads on a structure are usually categorized into dead and live loads.  These 
loads often control design because they occur in nearly all structures during normal operating 
conditions.  In foundation design, applied dead and live loads are typically transmitted by the 
superstructure.  The load transfer to substructures is not always well understood, which therefore 
adds uncertainty to foundation loading.  For highway structures, gravity loads represent the main 
dead loads and traffic loads are the primary live loads.  Gravity loads are quite predictable, and 
hence typically involve less uncertainty than live loads; traffic loads, for example, can vary over 
time scales ranging from hours to months.  Nevertheless, the uncertainty in loading, in the 
absence of extreme events, is often lower than the uncertainty in resistance.  

Extreme loading caused by wind, flowing water, earthquakes and vehicle impact must 
also be considered in the design of bridges and their foundations.  Extreme loading occurs 
infrequently and typically for short durations but can be significant in magnitude.  While a 
structure in a given area may be subject to multiple sources of extreme loading, it is highly 
unlikely that different extreme loading cases will occur at the same time.  Therefore, different 
load combinations with different likelihoods of joint occurrence are considered.  While primary 
dead and live loads usually act vertically, extreme loads frequently produce high lateral loads 
which may require special lateral load resisting systems to be incorporated in a structure.  For 
bridges, strong wind, rapidly flowing water, earthquakes and possible vessel collisions can create 
high transient lateral forces.  

Earthquake loading is an extreme event that requires special consideration in seismically 
active areas.  Because earthquakes are unpredictable, seismic loading can easily be more 
uncertain than the resistance.  The characteristics of earthquake ground motions cannot be 
predicted accurately and soil-pile-structure interaction is very complex.  As lateral shaking 
occurs, the stiffness and strength of the soil changes and large lateral loads and overturning 
moments can be imposed on foundations.  Also, limited strong ground motion data and site 
response effects contribute to the uncertainty in earthquake loads. 
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3.3.2 Sources of Uncertainty in Capacity (Resistance) 

In the context of geotechnical design, the capacity of a system such as a foundation refers to its 
ability to resist some demand satisfactorily with respect to a specified performance objective.  
Traditionally, geotechnical engineers have considered stability as an ultimate performance 
objective; hence, capacity has been interpreted as the full mobilization of available resistance (in 
terms of forces and/or stresses), beyond which no additional loading can be resisted.  However, 
capacity can be defined more generally – in addition to its traditional (ultimate) interpretation, it 
can also be interpreted in terms of response, physical damage, or loss.   

To arrive at the ultimate capacity, ultimate material parameters such as soil shear strength 
are first estimated by laboratory or in situ testing, correlation to other parameters, or through 
knowledge and experience.  The material parameters are then used as input to a model that 
predicts the capacity of the system of interest.  As a result, the uncertainty in the ultimate 
capacity for a given level of loading depends on the uncertainty of the material parameters, the 
sensitivity of the capacity to those parameters, and the uncertainty of the model used to predict 
the capacity.  Models used to predict the ultimate capacities of foundations may range from limit 
equilibrium procedures that require shear strength parameters as input to empirical procedures 
that may be based on parameters such as penetration resistance.  In geotechnical engineering, 
many models are based on empirical data developed from regressions of field observations 
and/or experiments and knowledge of the phenomenon.  These models can be based on limited 
data and make significant assumptions.  On the other hand, measurements made during 
foundation construction, such as in the case of pile driving, can prove to be more reliable (i.e., 
less uncertain) than laboratory test data and theoretical calculations.  Therefore, it is important to 
understand the limitations and appropriateness of the calculation model chosen.  

Geotechnical material properties are notoriously difficult to determine accurately.  
Undisturbed samples are nearly impossible to obtain and empirical correlations to other 
measured quantities (e.g., insitu test parameters) are not perfect.  Soils behave nonlinearly and 
their properties can depend on time, stress history and strain level.  As a result, experience, 
geologic interpretation, and engineering judgment are frequently required to estimate 
geotechnical parameters, resulting in soil properties with a high degree of uncertainty.  

The evaluation of soil properties is also made difficult by the spatial variability caused by 
the random nature of soil deposition processes.  Spatial variability can be significant for bridge 
construction in river valleys, where sediments are eroded and deposited frequently.  Due to 
seasonal flooding and meandering flow channels, the subsurface near rivers may include large 
debris, pockets of soft material and varying depths and thicknesses of good bearing soil.  These 
variations can be very significant when considering the shaft length needed for a bridge pier. The 
level of spatial uncertainty depends on the amount of site exploration conducted.  Every site 
exploration involves characterization of the soil properties at a limited number of discrete 
locations (e.g., boreholes, test pits, etc.).  Soil properties at all other locations are estimated from 
the properties at these discrete locations with consideration of the geologic processes at work in 
the area.  If many explorations are conducted, a site may be characterized quite well.  However, 
for typical sites, cost and/or accessibility may limit the thoroughness of the exploration program 
resulting in a relatively unknown subsurface profile.  

Because of construction effects and variations in installation procedures, the actual 
capacity achieved may differ from the calculated capacity.  Properly accounting for these effects 
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helps to ensure that design capacity is similar to in situ capacity.  For piles, the uncertainty in 
capacity depends on the amount of monitoring done during installation.  When driving rate, 
embedment depth and other factors are not monitored it is difficult to know if the pile has gained 
adequate strength.  

3.3.3 Allowable Stress Design 

Allowable Stress Design (ASD), also known as Working Stress Design (WSD), has been the 
most commonly used method of design in civil engineering since the early 1800s and is still 
widely used in practice.  ASD involves the comparison of the load, or demand, to the resistance, 
or capacity, through the use of a factor of safety. 

3.3.3.1 Principles of Allowable Stress Design 

In ASD, the estimated ultimate resistance, , is reduced by a factor of safety,  to obtain the 

allowable design load, .  The basic load requirement of ASD is that the applied load, , must 

be less than or equal to the allowable design load.  

          (3.1) 

The factor of safety, therefore, is applied only to the estimated capacity with the implication that 
limiting the loading to some fraction of the estimated ultimate capacity will produce a desired 
level of performance. 

3.3.3.2 Factors of Safety 

ASD generally relies on a single, global, design factor of safety to account for uncertainties and 
consequences of failure (Allen, 2005b).  The factor of safety, in reality, accounts for uncertainty 
due to variations in loads and resistances, inaccuracies of response models, the amount of 
observational information obtained during construction, the consequences of failure, and, to an 
extent, tradition and expedience.  Because each of these factors can vary significantly from one 
project to another, the use of a single, standard factor of safety will rarely produce a consistent 
actual margin of safety. 

The factor of safety is typically applied to the estimated capacity, and this greatly reduced 
resistance is then compared to the estimated load.  Alternatively, a factor of safety could be 
applied to parameters that control capacity and those reduced parameters could then be used to 
calculate the resistance.  The former approach has historically been more common in the United 
States, and the latter more popular in Europe. 

In either case, the actual factor of safety is frequently much higher than the design factor 
of safety because soil strength data is usually interpreted conservatively, the design loads are 
estimated conservatively (actual service loads are likely less than the design loads), the as built 
dimensions of the foundation may be larger than planned and some analysis methods make 
conservative assumptions that produce conservative results.  
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For typical bearing capacity problems, geotechnical engineers frequently use a factor of 
safety between 2.5 and 3.5, but may use a value outside this range depending on factors such as 
soil type, soil variability, amount of site characterization data obtained, importance of structure 
and consequences of failure, and the likelihood of design load occurring during the lifetime of 
the structure. 

The factor of safety applied to pile foundation design problems depends on the extent of 
analysis and control in construction and monitoring.  A smaller factor of safety is used when a 
greater level of control is used, as illustrated by Table 3.1.  The table assumes that subsurface 
exploration will be performed, and that conventional, limit equilibrium capacity calculations will 
be performed.  If those efforts are supplemented by capacity estimates based on dynamic 
formulae, which are notoriously uncertain, a factor of safety of 3.5 is recommended.  However, if 
a wave equation and CAPWAP analysis is performed, the recommended factor of safety drops to 
2.25.  If a pile load test is also performed a factor of safety of 1.9 is recommended.  More 
construction control generally corresponds to a lower factor of safety and usually means a more 
economical design. 

 

Table 3.1   Factor of safety on ultimate axial geotechnical capacity based on level of 
construction control (after AASHTO, 1997) 

 

Basis for Design and Type 
of Construction Control Increasing Design/Construction Control   

Subsurface Exploration X X X X X 
Static Calculation X X X X X 
Dynamic Formula X     
Wave Equation  X X X X 
CAPWAP Analysis   X  X 
Static Load Test    X X 
Factor of Safety 3.50 2.75 2.25 2.00* 1.90 
*For any combination of construction control that includes a static load test, FS = 2.0. 

 

The design factor of safety is generally selected subjectively based on the knowledge, 
experience and judgment of the engineer.  An experienced engineer working on projects in an 
area with which he is very familiar, may use his knowledge of what has worked and not worked 
in the past to adjust the design factor of safety downward (or upward, if necessary) to achieve 
some perceived level of confidence in the anticipated performance of the structure.  In ASD, 
therefore, the design engineer has the flexibility to choose an appropriate factor of safety for the 
project.  This freedom can be useful for unique projects, but it can also create ambiguity and 
inconsistency in design. 

ASD has worked for many years and does have practical advantages.  Engineers are 
familiar with ASD and it allows expedience and rapid implementation in design.  However, the 
fact that ASD has worked for many years is not justification that it is good design.  In ASD, 
uncertainties are accounted for only in a qualitative, and usually inconsistent, sense.  A more 
rational approach would consider uncertainties individually and quantitatively, allowing for 
consistent design reliability and quantifiable design risk. 
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3.3.4 Reliability Based Design 

The ambiguity caused by the subjective treatment of uncertainty in the ASD approach can be 
reduced by reliability-based design (RBD).  Through the use of probabilistic methods, RBD 
provides a more rational and rigorous treatment of the uncertainties in design.  RBD quantifies 
uncertainty so that risk can be accounted for objectively and consistently.  Absolute reliability is 
unattainable in the presence of uncertainty.  However, through the use of probability theory, 
RBD can provide a framework for developing design criteria that ensures a prescribed level of 
reliability.  Reliability theory has been successfully used to calibrate and optimize many design 
codes.  

3.3.4.1 Probability in Design 

Probability concepts can be used to quantify uncertainties in loads and resistances for design 
problems.  In practice, neither capacity nor demand are deterministic quantities.  Therefore, it is 
appropriate to model each as random variables and to incorporate their variability into the design 
process through probabilistic means.  Modeling and quantifying the uncertainties of random 
variables are the initial and essential steps in any risk-based analysis and design.  

Assuming that they are normally distributed, the variations of load and resistance are 
completely described by their respective means, and , and standard deviations.  The factor of 

safety is taken as the ratio of the resistance to the loading.  Using mean values, the central, or 
mean, factor of safety can be expressed as  

Q
RFSm =           (3.2) 

The central factor of safety is affected by the relative distance between the mean values of load 
and resistance (i.e., the distance between the centers of the distributions), but is not affected by 
the dispersion in either load or resistance.  

In reality, the actual load and capacity for a given case may differ from their respective 
mean values.  In design, a nominal load, , and a nominal resistance, , are often selected 

conservatively with respect to their mean values.  The nominal resistance is typically a fraction 
of the standard deviation below the mean resistance and the nominal load is a fraction of the 
standard deviation above the mean load.  The nominal factor of safety,  can then be 

expressed as 

        (3.3) 

where  and  are the standard deviations of the load and resistance, respectively, and and  

are constants that reflect bias in the nominal loads and resistances.  The nominal factor of safety, 
therefore, provides a more conservative design when its value is equal to that of the central factor 
of safety.  Using the above definitions, 
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        (3.4) 

as illustrated in Figure 3.2.  
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Figure 3.2.   Illustration of mean and nominal loads and resistances. 
 

3.3.4.2 Probability of failure 

Design reliability is related to the probability that system performance is satisfactory or that 
some design criteria is achieved.  On the other hand, design risk is related to the probability that 
system performance is unsatisfactory or that some design criteria is not achieved.  In general, this 
probability of failure must be acceptably low to achieve the desired level of reliability.  

After the uncertainty of the load and resistance has been quantified, the probability of 
failure can be estimated.  Figure 3.3 shows that a region exists in which the load and resistance 
distributions overlap each other, i.e., where there is some non-zero probability that the load can 
exceed the resistance and thereby produce failure.  The probability of failure is related (but not 
equal) to the area of the overlap of the load and resistance pdfs as shown by the shaded area in 
Figure 3.3.  The actual probability of failure can be computed as 

∫
∞

=<=
0

)()(][ dqqfqFQRPP QRf        (3.5) 

where  is the CDF of  evaluated at . 
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Figure 3.3   An illustration of the probability of failure for normally distributed variables. 
 

The overlap of the load and resistance distributions shows that there is some probability 
that a higher-than-average load could combine with a lower-than-average resistance to produce 
failure.  The probability of failure, therefore, is affected by the relative distance between the 
curves, the dispersion of the curves and the shapes of the curves.  Safe design ensures that the 
area of the overlap is sufficiently small to produce an acceptable probability of failure.   

This graphical characterization of load and resistance can be used to illustrate the value of 
the probability of failure as a design tool and the shortcomings of the central factor of safety in 
the ASD approach.  Figure 3.4 shows two resistance distributions with the same mean resistance 
but different levels of dispersion about that mean resistance.  An evaluation based on the central 
factor of safety would show that both have the same factor of safety, which many engineers 
would take to imply that the likelihood of failure is the same.  However, the levels of overlap 
between resistance distributions  and  with the load distribution clearly indicate that a 

higher probability of failure would be expected for resistance distribution  than for .  

Therefore, the ASD central factor of safety does not accurately indicate a level of design risk. 
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Figure 3.4.   An illustration of the effect of the dispersion of resistance on factor of safety 

Figure 3.5 shows another situation where the factor of safety used in ASD can provide a 
misleading indication of safety.  The system with resistance, , has a lower mean resistance but 

less dispersion than the system with resistance, .  The relative positions of the mean 

resistances (i.e., ) and the load in Figure 3.5 implies that  is safer than  when safety 

is evaluated in terms of the central factor of safety.  However, in reality  due to the 

higher uncertainty in .  The use of a central factor of safety in this case is again misleading.  
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Figure 3.5.   Illustration of the effect of the expected value and dispersion of resistance on 
factor of safety. 
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The use of the nominal factor of safety might reduce the types of inconsistency described 
in the preceding paragraphs; however, there is no prescribed method for selecting the nominal 
value so the use of a factor of safety remains ambiguous.  

Equation 3.25 provides a means for computing the probability of failure for any 
distributions of Q and R. For certain specific distributions, closed-form analytical expressions 
can be derived. For example, if  and  are normally distributed, failure will occur when 

.  Therefore, the probability of failure can be expressed as 

    (3.6) 

where  is the CDF of the standard normal variate.  

If  and  are lognormally distributed with logarithmic mean, , and logarithmic 

standard deviation, , then 

        (3.7) 

Recognizing that (for a random variable, ), 

        (3.8) 

     (3.9) 

the probability of failure can be written in terms of means and coefficients of variation as 

      (3.10) 
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3.3.4.3 Reliability index 

After a prescribed value is chosen for the probability of failure, design will proceed with the goal 
that all elements have a probability of failure less than or equal to the prescribed value.  

For two independent, normally distributed random variables, and , the function 

 will also be normally distributed with pdf given by 

    (3.11) 

Letting and , then assuming  gives 

    (3.12) 

which indicates that  and .  Note that the standard deviation of  

depends on both  and and is greater than either or  .  The failure state ( or ) 

can be seen in Figure 3.6.   to be  standard deviations below the mean, i.e., . The 

quantity  is commonly referred to as the reliability index and is uniquely related to the 

probability of failure through the relationship 

         (3.13) 

Or alternatively 

        (3.14) 
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Figure 3.6.   An illustration of a probability density function . 
 

The reliability index, , is usually a more convenient representation of the probability of 

failure, and is commonly used in risk-based design.  The probability of failure decreases as  

increases.  Typical values of the reliability index and its corresponding level of performance are 
summarized in Table 3.2.  Though the numbers can be of similar magnitude, the reliability index 
is not the same as the factor of safety from ASD.  

Table 3.2.   Relationship between Reliability Index and Probability of Failure (after U.S. Army 
Corps of Engineers, 1997). 

Reliability Index,  Probability of Failure,  Expected Performance Level 

1.0 0.16 Hazardous 
1.5 0.07 Unsatisfactory 
2.0 0.023 Poor 
2.5 0.006 Below average 
3.0 0.001 Above average 
4.0 0.00003 Good 
5.0 0.0000003 High 

Note: Φ(·) = standard normal probability distribution 

3.3.5 Load and Resistance Factor Design 

As suggested by Becker (1996a), there are three basic levels of probabilistic design.  Level III is 
the fully probabilistic method.  It requires that the actual probability density functions for all 
variables be known.  It is the most complex, time consuming and expensive method, and is 
generally only suitable for use on unique projects.  Level II is the approximate probabilistic 
method.  It does not require knowledge of the actual probability distributions of random 
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variables.  Instead, only the shape and type of distribution needs to be defined.  Level I is the 
semi-probabilistic method in which safety is represented by separate load and resistance factors 
which are determined from a second moment (Level II) reliability analysis.  

RBD is most commonly implemented through the use of a practical framework called 
Load and Resistance Factor Design (LRFD).  In LRFD, the global factor of safety used in ASD 
is replaced by separate load and resistance factors.  LRFD (a Level I method) is a simplification 
of the rigorous RBD into a practical and easy to use design approach that can readily be codified.  
It is the end product of a shift in design philosophy to the use of probabilistic design as opposed 
to deterministic design.  RBD is simplified into an LRFD format by defining a load factor, , and 

resistance factor, , that are applied to the nominal load and resistance, respectively, such that 

the following equation is satisfied: 

 

         (3.15) 

where  is a factor that accounts for the ductility, redundancy, and importance of the system,  

is a load factor applicable to a specific load component,  is a specific nominal load 

component and  the summation of the factored loads for the given loading condition 

applicable to the limit state being considered.  This represents the sum of the factored load 
contributions.  If only one load component is considered, Equation 3.48 can be shown as 

           (3.16) 

where  is the nominal load and  is the nominal resistance.  The product of the load factor 

and the nominal load, , is referred to as the factored load and, likewise, the product of the 

resistance factor and the nominal resistance, , is referred to as the factored resistance. 

Generally, load factors are limited to values greater than one and therefore produce factored 
loads that are greater than the nominal load.  Resistance factors are limited to values less than 
one and produce factored resistances that are lower than the nominal resistance. 

The values of the load and resistance factors are determined, or calibrated, in such a way 
as to provide a desired level of reliability, which can be expressed in terms of a reliability index 
or probability of failure associated with some performance objective.  

3.3.5.1 LRFD Calibration 

Implementation of LRFD requires the specification of appropriate load and resistance factors, 
whose values must be determined through a calibration exercise.  The fundamental goal of the 
calibration is to establish a set of load and resistance factors that are consistent with a desired 
probability of failure or reliability index for a given performance objective.  In some cases, load 
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and resistance factors are selected to produce a design consistent with conventional (generally 
ASD-based) practice.   

Although different procedures can be used for LRFD calibration, the main steps in a 
typical calibration process are described in the following subsections. 

Identification of Limit States 

LRFD has appropriately been referred to as Limit States Design (LSD) because it requires that 
all performance objectives be defined in terms of limit states.  A limit state is a performance 
condition related to a design objective.  Three basic limit states are commonly used in LRFD 
design.  Ultimate (or strength) limit states represent states at which the ultimate capacity of a 
system (or its important components) is reached.  Exceedance of an ultimate limit state, 
therefore, can have very serious consequences such as collapse of a structure.  Serviceability 
limit states, on the other hand, relate to lower levels of damage that affect the operating 
characteristics of the system of interest.  While the strength limit state is often most important, 
LRFD emphasizes checking both strength and serviceability limit states for compliance.  
Depending on geographic location and the potential for extreme cases of loading, an extreme 
limit state may also need to be checked.  Each limit state may have a different probability of 
exceedance, so load and resistance factors have different values for different limit states.   

Ultimate Limit State 

The Ultimate Limit State (ULS) is used to ensure an appropriate margin of safety based on the 
ultimate strength of the materials. At the ULS, the strength of the soil and/or structure is fully 
mobilized and any additional stress or load would produce a failure mechanism that could lead to 
instability (collapse) of the structure. Exceedance of the ULS can lead to destruction of the 
structure and danger to people in, on, beneath, or near it. The requirement for ULS is usually 
expressed in terms of loads or stresses, as in Equation 3.49. 

Serviceability Limit State 

While the ULS deals with life safety and structural stability performance objectives, it is also 
desirable that a structure remain operational under lower levels of loading than those associated 
with the ULS.  The Serviceability Limit State (SLS) is used to control the likelihood that 
deformations, vibrations and movements large enough to affect operability of a structure will 
occur under anticipated loading conditions.  In geotechnical engineering, serviceability limit 
states can be defined with respect to settlement, lateral displacement, and overall stability.  Pile 
lateral capacity design is controlled by the serviceability limit state.  In this context, the notions 
of load and resistance typically expressed in terms of forces (and stresses) are not particularly 
useful.  It has become common in structural engineering to use the terms “demand” and 
“capacity” in the place of “load” and “resistance.”  Demands, therefore, become a measure of the 
response of a system and can be expressed in terms of loads or displacements (structural 
engineers refer to “displacement demand,” for example).  The capacity, therefore, can be a 
measure of a system’s ability to resist force, or to accommodate displacement without exceeding 
some acceptable level of damage.  The performance requirement for SLS is normally expressed 
in terms of tolerable deformations (i.e., deformation ≤ tolerable deformation to remain 
serviceable, or deformation demand ≤ deformation capacity).  In current LRFD procedures, 
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unacceptable deformation is compared to the deformation predicted using factored loads and the 
resistances.   

Serviceability limit states have a higher likelihood of occurrence than ULS because they 
occur at lower, and consequently more frequent, levels of ground motion.  In many geotechnical 
applications the SLS (settlement) is initially designed for, and the adequacy of design with 
respect to the ULS is checked subsequently.  

Extreme Event Limit State 

Structures may also, generally depending on their geographic location, be subjected to one or 
more forms of extreme loading.  For bridges, extreme events could include major earthquakes or 
floods, collision with a vessel, vehicle or ice flow, or scour.  The Extreme (Event) Limit State 
(ELS) is used to assure that catastrophic failure, which would have life safety implications, will 
not occur in extreme loading cases.  

Develop Response Models 

A response model must be developed for each limit state.  The response model must predict the 
response parameter(s) of interest, typically force and/or stress for the ULS and displacement 
and/or strain for the SLS, given the appropriate loading.  A response model for pile capacity, for 
example, could be the Gates model (Gates, 1957) that predicts capacity (in terms of force) as a 
function of driving resistance.  On the other hand, a response model for pile displacement could 
involve finite element analysis of a pile embedded in a soil deposit.  A number of different 
response models are typically available for a given problem. 

Proper formulation, use, and interpretation of the response model is one of the most 
important aspects of design; it is imperative that the engineer use his/her knowledge and 
experience to identify all feasible failure modes and deformation mechanisms and to ensure that 
their development can be adequately captured by the response model(s) used in the design 
process. 

Select Characteristic Values 

Prior to establishing the load and resistance factors, it is critically important to clearly define the 
characteristic load and resistance values to which the load and resistance factors will be applied.  
Some implementations have used mean values and others have used more conservative nominal 
values; obviously, mixing factors with different characteristic values inconsistently can lead to 
substantially under- or over-conservative designs.  AASHTO recommends that average 
measured values of relevant laboratory and/or insitu test data be used for individual geologic 
units when sufficient data to compute a stable average is available.  Since the goal of LRFD is to 
produce designs with predictable reliabilities, the amount of conservatism (or statistical bias) in 
any characteristic load and resistance values must be carefully determined. 

As previously described, nominal parameter values may differ, usually in a conservative 
manner, from mean values of the parameters.  The ratio of the mean measured value to the 
predicted value is typically defined as the bias associated with the predicted value; obviously, 
predictions that match the mean values are unbiased.  
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Characterize Uncertainty in Response Model Parameters 

A response model will have a number of input parameters that it uses to predict the response 
parameter(s) of interest.  In most cases, these input parameters will not be known with complete 
certainty, so they can be treated as random.  Characterization of a random variable can be 
performed at different levels, and can range from the use of a small number of statistical 
moments (e.g., mean and variance) to specification of a complete probability distribution.   

It is a rare project for which sufficient data to perform a complete statistical 
characterization of soil properties is available.  Consequently, it is frequently necessary to 
estimate the uncertainty in various soil properties using the results of data compilations from 
similar soil conditions (e.g., Phoon and Kulhawy, 1999a; 1999b; Jones et al., 2002).  Such 
compilations, an example of which is shown in Table 3.3, generally present coefficients of 
variation for different properties for different soil types.  Suggestions regarding the type of 
distribution that best represents the different soil properties may also be available; many soil 
properties have been shown to be approximately lognormally distributed, and it is common to 
assume that they are distributed in that manner.  The lognormal distribution has the important 
property of not permitting negative parameter values, and is positively skewed in a manner 
similar to that frequently observed in soil property databases.  With that assumption, knowledge 
of the mean and coefficient of variation is sufficient to define the entire lognormal distribution.  
It should be recognized, however, that the lognormal distribution is unbounded at the high end 
and may, therefore, assign non-zero probabilities to parameter values that may not be feasible or 
realistic. 

Table 3.3.   Coefficient of variation (C.O.V.) for typical geotechnical parameters (after Becker, 
1996b). 

Geotechnical parameter C.O.V. References 

Index Properties 
Natural variability 0.05 – 0.15 Kay, 1993 
Natural water content (18) Kulhawy, 1992; Phoon et al., 1993 
Liquid and plastic limits (0.11) Kulhawy, 1992; Phoon et al., 1993 
Unit weight 0.04 – 0.16 (0.07) Cherubini et al., 1993; Kulhawy, 1992 
Initial void ratio (0.20) Kulhawy, 1992 
SPT N penetration resistance 0.15 – 0.50 Barker et al., 1991; Meyerhof, 1993; 1995 
CPT qc tip resistance 0.15 – 0.37 Barker et al., 1991; Meyerhof, 1993; 1995 
Strength Properties 
Angle of internal friction 
     From laboratory tests 0.05-0.25(0.13) Cherubini et al. 1993; Meyerhof 1993, 1995; 

Kulhawy 1992; Manoliu and Marcu 1993 
     From CPT correlations for sand 0.15-0.25 Barker et al. 1991 
Undrained shear strength 0.12-0.85(0.34) Meyehoff 1993, 1995; Cherubini et al. 1993; 

Kulhawy 1992 
Deformation properties 
Elastic modulus 0.2-0.5 Meyerhof 1993, 1995 
Modulus of deformation 0.2-0.4 Meyerhof 1993, 1995 
Compression index, Cc 0.17-0.55(0.37) Cherubini et al. 1993; Meyerhof 1993, 1995; 

Kulhawy 1992 
Values in parenthesis represent mean values 
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Characterize Model Uncertainty 

A number of different response models are frequently available for a given problem. Some are 
relatively simple and easy to use, and some are quite detailed and complex.  In general, the 
simpler models do not account for the mechanism(s) of response as well as the more detailed 
models, and therefore have a higher level of model uncertainty (or, potentially, model bias).  
Because model uncertainty and bias affect the probability of failure it is usually necessary to 
compute resistance factors for different models.  When calibrated to achieve a particular 
reliability index (or probability of failure), the use of a less accurate (more uncertain) response 
model will require use of a lower resistance factor for the same level of bias.  This situation, 
therefore, allows an owner or engineer to choose between using simple response models, which 
will lead to more expensive structures due to the lower resistance factor, and more complex 
response models, which will have higher engineering costs but lower construction costs by 
allowing the use of a higher resistance factor.  

The quantity and quality of calibration data will both affect load and resistance factors.  
Ideally, a large data set indicating the response of the type of system of interest to significant 
ranges of the various variables that influence the response would be available.  For each response 
model, then, analyses of the cases in the data set would be performed and the accuracies of the 
models would be interpreted in terms of the residuals (i.e., differences between model-predicted 
and observed values).  These residuals would be affected by uncertainty in the input parameters 
and model uncertainty.  Procedures are available for identification of model uncertainty given the 
total uncertainty and the parametric uncertainty; these procedures are typically based upon the 
generally reasonable assumption that model and parametric uncertainty are independent of each 
other, in which case the total variance is the sum of the parametric variance and the model 
variance.  The model variance (and, hence, the model standard deviation) can be obtained by 
subtracting the parametric variance from the total variance. 

Select Calibration Target 

LRFD can be implemented in a number of different ways, each of which has philosophical and 
practical advantages and disadvantages.  The decision on which approach to take for a given 
problem, may well be controlled by political or regulatory considerations rather than purely 
engineering considerations.  The primary approaches are described briefly in the following 
paragraphs. 

The original intent of reliability-based limit state design was to produce designs with a 
specified probability of successful performance.  In that sense, calibrating load and resistance 
factors to produce a given reliability index is ultimately the most appropriate manner in which to 
implement LRFD.  However, such calibration requires more performance data than is frequently 
available, and also requires specification of a particular reliability index, which may involve 
some level of subjective decision-making. 

Another calibration target may be to produce designs of reliability consistent with the 
reliability of other components of a structure or system.  The concept of consistent reliability is 
important for development of optimal designs.  One of the drawbacks of ASD is that it 
frequently produces designs of variable (and unknown) reliability that can lead, for example, to a 
foundation with a much higher probability of failure than the structure it supports.  In such cases, 
the money spent to provide the “extra” capacity of the structure is wasted because the structure 
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may still be destroyed if its foundation fails; in other cases, the reverse situation (foundation with 
higher capacity than structure) may occur.  Therefore, a target level for calibration of an LRFD 
foundation design procedure may be specified as being equal to the reliability index used for the 
superstructure. 

Finally, the introduction of any new design paradigm should, at least in the early stages 
of its use, produce designs that are not radically different from designs known to have performed 
satisfactorily in the past.  For this reason, and for reasons relating to availability of data and 
historical precedent, LRFD calibrations for geotechnical problems have frequently been 
performed to produce designs consistent with typically-used ASD factors of safety.  While this 
approach is not seen as the best ultimate use of LRFD principles, it offers a logical way to 
transition from ASD to reliability-based LRFD design procedures and is commonly used in 
practice.  A detailed description of the development of current load and resistance factors for 
foundation design is presented in Allen (2005b). 

Determine Load and Resistance Factors Consistent with Calibration Targets 

The process of determining the load and resistance factors in an LRFD calibration exercise 
depends on the calibration target and on the nature of the problem of interest.  In some cases, 
resistance factors may be desired for a single load case; in others, they may be desired for 
multiple load cases.  It should be noted that load and resistance factors are not unique – there are 
an infinite number of combinations of load and resistance factors that can produce the same 
probability of failure (or reliability index).  It is desirable, however, to constrain load factors to 
being greater than 1.0 and resistance factors to be less than 1.0, although there are special 
conditions under which that may not be possible.  For relatively simple design problems, closed-
form solutions for load and resistance factors may be available. 

Load Factor 

Load factors are generally more straightforward to determine than resistance factors since they 
depend primarily on factors that can often be measured for common load cases.  Upon statistical 
characterization of the load, Q, a load factor to be applied to the mean load, , (or λQQn, if the 

nominal load is used) can be estimated as 

          (3.18) 

where is the desired number of standard deviations above the mean required to obtain the 

desired probability of exceedance and COVQ is the coefficient of variation of the load.  In 
practice, values of  have been somewhat arbitrary (Allen et al., 2005b), but values of  

are common.  With this approach, the factored load would be two standard deviations above the 
mean load.  If normally distributed, the factored load would then have a 2.3% probability of 
being exceeded.  

Resistance Factor 

Once a load factor has been established, the resistance factor required to produce the desired 
probability of failure, or reliability index, can be determined.  As indicated previously in 
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Equation 3.25, for the case of normally distributed load and resistance, the probability of failure 
can be computed as 

         (3.19) 

To develop an explicit expression for a risk-based design format, Equation 3.52 can be written as 

        (3.20) 

which, recognizing that , allows the equality corresponding to the limit state 

boundary to be expressed as 

          (3.21) 

Substituting , , , and , an expression for 

the resistance factor, , can be written as 

        (3.22) 

It should be noted that the resistance factor, , appears on both sides of Equation (2.15) so that 

an iterative approach may be required to compute its value.   

If the calibration is to be performed for a target of consistency with a particular ASD 
central factor of safety, , Equation 3.54 can be modified by substituting  and 

solving for the value of  that is consistent with the specified factor of safety.  That value of  

can then be used with Equation 3.55 to determine the resistance factor, . 

For the case of lognormally distributed load and resistance, the resistance factor can be 
expressed as 

     (3.23) 
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In this case, iteration is not required to compute the resistance factor. 

The preceding examples are simple but show how the load and resistance factors are 
related to each other, to the reliability index, and to the uncertainties in both load and resistance.  
For design problems that are sufficiently complicated that they cannot be idealized or 
approximated as having normal or lognormal distributions, more complicated procedures such as 
Monte Carlo simulation may be required to identify load and resistance factors.   

3.4 PERFORMANCE-BASED SEISMIC DESIGN 

A complete prediction of performance requires prediction of the response, damage, and loss 
associated with one or more specific levels of ground shaking.  This process can be illustrated 
schematically as shown in Figure 3.7.  A response model is used to predict the response of a soil-
structure system to earthquake shaking.  The response model can range from an empirical 
algebraic equation to a detailed nonlinear finite element model.  A damage model is used to 
predict physical damage from response levels.  Finally, losses are predicted from damage by a 
loss model.  The loss model may be a relatively straightforward combination of repair quantities 
and unit costs, or a complex financial model that considers indirect losses, future interest rates, 
etc.  Alternatively, a loss model can be expressed in terms of downtime or increased traffic 
congestion due to temporary (or permanent) loss of one or more bridges. 
 

 

Figure 3.7. Schematic illustration of process by which response, damage, and loss are 
predicted. 

3.4.1 History of Performance-Based Seismic Design 

Early efforts at seismic design were scenario-based, i.e., based on the identification of one or 
more “design earthquakes” (e.g., maximum credible and maximum probable earthquakes) 
typically specified by source (fault), magnitude, and location.  The ground motions associated 
with the design earthquakes were estimated deterministically using median values from early 
attenuation relationships.  These median values generally neglected the now widely-recognized 
uncertainty inherent in ground motion estimation. 

An important advance in seismic design came in the late 1970s with the publication of 
the ATC-3-06 (Applied Technology Council, 1978) report.  ATC-3-06 built on the probabilistic 
seismic hazard analysis concepts of Cornell (1968) and the mapping work of Algermissen and 
Perkins (1976) to express design seismic loading in a probabilistic manner.  Recognizing the 
dramatic differences in seismic activity across the United States, ATC-3-06 presented contour 
maps of effective peak acceleration (EPA) and effective peak velocity (EPV) which, together 
with soil profile coefficients, could be used to develop design response spectra for bridge 
structures.  The use of these two measures of ground motion intensity accounted for differences 
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in the high- and low-frequency characteristics of ground motions, and the soil profile coefficient 
controlled spectral shape.  ATC-3-06 recommended that design be based on a single level of 
ground shaking – that with a 10 percent probability of exceedance in a 50-yr period, i.e., a 475-yr 
return period.  For structures, ATC-3-06 provided guidance for the allowance of inelastic 
behavior of components through the provision of ductility, and based performance on the 
relationship between estimated and allowable interstory drifts.  The allowable story drifts were 
presented for four seismic performance categories in three seismic use groups.  Thus, the use of 
deformation-based response and capacity measures was introduced. 

Subsequent codes in various areas of the world have maintained the basic approach of 
ATC-3-06 but have refined many of the details.  Instead of basing design spectra on EPA and 
EPV, some are now based on short-period (0.2 sec) and long-period (1.0 sec) spectral 
accelerations.  Soil effects are accounted for by more refined soil classification systems with site 
class coefficients that account for basic effects of nonlinear response.   

3.4.2 Discrete Hazard Level Approach 

The first document widely recognized as establishing procedures for performance-based design 
of new structures was the Vision 2000 report (SEAOC, 1995).  While developed for buildings 
rather than bridges, Vision 2000 described procedures intended to produce structures “of 
predictable performance” with respect to a series of discrete hazard levels.  Figure 3.8 shows 
how Vision 2000 coupled four discrete performance levels (fully operational, operational, life 
safe, and near collapse) with four ground motion hazard levels (frequent, occasional, rare, and 
very rare) for structures with performance objectives for three categories of structures (basic, 
essential/hazardous, and safety critical).  The Vision 2000 report described the general levels of 
damage to various building components and provided allowable inter-story drift limits associated 
with the four performance levels.  These limits were expressed deterministically but were 
intended to be conservative; the degree of conservatism, however, is not known.  Thus, Vision 
2000 provided for design based on multiple levels of performance at multiple ground motion 
hazard levels, with performance related to deformation-related quantities (e.g., inter-story drift) 
that are closely related to damage. 

 

Figure 3.8.   Combinations of earthquake hazard and performance levels proposed by Vision 
2000 (SEAOC, 1995).  
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3.4.3 Integral Hazard Level Approach 

The Pacific Earthquake Engineering Research Center (PEER) has proposed a framework for 
PBEE (Cornell and Krawinkler, 2000; Deierlein et al., 2003).  The framework makes use of the 
previously described notation, and recognizes the fact that IMs, EDPs, DMs, and DVs, as well as 
the relationships between them, are all uncertain.  The PEER framework is encapsulated in a 
“framing equation” formally presented in its most general form as 

 ∫∫∫= )()|()|()|()( IMIMEDPEDPDMDMDVDV λλ ddGdGG  (3.24) 

In Equation (1), G(a|b) denotes a complementary cumulative distribution function 
(CCDF) for a conditioned upon b (the absolute value of the derivative of which is the probability 
density function for a continuous random variable) and the bold type denotes vector quantities.  
From left to right, the three CCDFs result from loss, damage, and response models; the final 
term, dλ(IM) is obtained from the seismic hazard curve.  The framing equation implicitly 
assumes that the quantities used to describe IM, EDP, and DM are sufficient predictors of EDP, 
DM, and DV, respectively. 

The framing equation allows calculation of loss hazard (i.e., the mean annual rate of 
exceeding various levels of loss) by integrating over all levels of ground motion, response, and 
damage with the contributions of each of those variables weighted by their relative likelihoods of 
occurrence.  The computed loss hazard can be viewed as the weighted average of all possible 
earthquake, ground motion, response, damage, and loss scenarios.  It can account not only for 
location-dependent differences in tectonic environment but also for local differences in 
construction quality (as evidenced by capacities to resist damage), repair costs, and local indirect 
costs.  It can therefore allow a uniform, objective, and consistent estimate of losses in different 
geographic regions. 

3.4.3.1 Solution by Numerical Integration 

This triple integral can be solved directly only for an idealized set of conditions, so it is solved 
numerically for most practical problems.  When all variables are continuous, the numerical 
integration can be accomplished (assuming scalar parameters for simplicity) as 
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where P[a|b] describes the probability of a given b, and where NDM, NEDP, and NIM are the 
number of increments of DM, EDP, and IM, respectively. 

The PEER framework has the useful benefit of being modular.  The discretized framing 
equation (Equation 2) can be broken down into a series of components, e.g., 
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which means that hazard curves can be computed for EDP, DM, and DV and interpreted in the 
same manner as the more familiar seismic hazard curve (for IM) produced by a PSHA. 

Using numerical integration, The PEER framing equation can be solved for arbitrary 
response, damage, and loss relationships.  Considering the response, a response hazard curve can 
be obtained, using Equation 3(a), for any IM hazard curve, any form of EDP = f(IM), and any 
distribution of EDP values given IM.  Because integration occurs over λIM(im), the PEER 
framework considers the entire ground motion hazard curve rather than just a single point as is 
done in conventional seismic design.  This allows consistent prediction of response hazards in 
different seismic/tectonic environments ranging from low/weak (e.g., Sacramento) to moderately 
frequent/strong (e.g., Seattle) to frequent/very strong (e.g., Los Angeles) to rare/extremely strong 
(e.g., Aberdeen).  These benefits could also be applied at the national level where even more 
extreme variations in seismic activity exist. 

3.4.3.2 Closed Form Solution for Response 

Many seismic hazard curves are nearly linear on a log-log plot, at least over significant ranges of 
ground motion intensity (Department of Energy, 1994; Luco and Cornell, 1998), which implies a 
power law relationship between mean annual rate of exceedance and IM that can be expressed as 

 k
IM IMkim −= )()( 0λ  (3.27) 

In this expression, k0 is the value of λIM(im = 1) and k is the slope of the seismic hazard curve (in 
log-log space, in which Equation (3.27) plots as a straight line). 

The response of a bridge foundation, expressed in terms of displacements and rotations, 
is a function of the earthquake ground motion, the dynamic response of the foundation, and the 
dynamic response of the structure supported by the foundation.  The nature of the loading 
applied to a pile group, therefore, is strongly influenced by the dynamic response of the structure, 
which will be sensitive to the specific characteristics of the individual structure.  In order to 
produce a more general solution, the PEER framework can be modified by the inclusion of a 
load measure, LM, that is a function of the ground motion and structural response, and is also a 
sufficient predictor of foundation response.  If the loading model is assumed to be of power law 
form 

 bIMaEDP )(=  (3.28) 

with lognormal dispersion ( IMEDPR |lnσβ = ), a closed-formy solution for the resulting EDP 
hazard curve can be expressed as 
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This equation describes the mean annual rate of exceeding some level of response, EDP = edp, 
given the seismic hazard curve, which is the result of a probabilistic seismic hazard analysis and 
a probabilistic response model.  It therefore considers all possible values of IM rather than only 
those corresponding to the small integer number of return periods considered in conventional 
design, and all levels of foundation loading given the various levels of ground shaking.  Equation 
(8) is composed of two parts, the first of which is a function of edp and the constants (k0, k, a, b) 
that describe the mean hazard curve and the median EDP-LM relationship (i.e., the response 
model).  The second part depends on the slopes of the hazard curve and median response model 
relationship and, most significantly, on the uncertainty in the response model.  The second term 
can be viewed as an “uncertainty multiplier” since its value is 1.0 when there is no uncertainty in 
the loading and response models and becomes progressively greater than 1.0 as the response 
model uncertainty increases.  This result shows that the mean annual rate of exceedance of a 
particular EDP value increases with increasing uncertainty.  Put another way, the EDP value 
corresponding to a given mean annual rate of exceedance (or return period) increases with 
increasing response model uncertainty. 

3.5 A MODIFIED PERFORMANCE-BASED RESPONSE FRAMEWORK 

Direct prediction of the response of a soil-foundation-bridge system from an earthquake ground 
motion would require development of a complete soil-foundation-structure model for the specific 
bridge of interest.  Such an analysis would require either a single computer program capable of 
modeling the soil, foundation, and structure with appropriate levels of rigor, or a substructuring 
approach.  Most computer programs used for direct seismic analysis model soil behavior or 
structural behavior rigorously, but few are capable of modeling both simultaneously.  
Furthermore, given the high levels of nonlinearity that exist in soil behavior (at moderate levels 
of shaking) and structural response (at higher levels of response), direct analyses must be 
performed in the time domain and are therefore computationally time-consuming.  The 
substructuring approach involves performing a kinematic interaction analysis, in which the soil 
and foundation (with stiffness but no mass) are modeled in one analysis to obtain a foundation 
input motion, and then the structural response to the foundation input motion is computed in a 
second, inertial interaction analysis.  The substructuring approach relies upon the principle of 
superposition and therefore implies linear (or equivalent linear) response. 

In order for the investigation described in this report to produce results of sufficient 
generality to be useful and applicable to a wide variety of bridge, site, and foundation conditions, 
a modified performance-based framework was developed.  The modified framework involves 
definition of an intermediate variable, referred to hereafter as a “load measure,” LM, that is 
computed from the ground motion and used to compute the foundation response.  Figure 3.9 
schematically illustrates the role of the load measure in the response prediction process.   
 

 

Figure 3.9.   Schematic illustration of modified performance-based framework. 
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In the modified framework, a modular substructuring approach is used to separate the 
structural and foundation responses.  The purpose of this approach is to allow more convenient 
consideration of a wide range of bridge structures and pile foundations.  While the direct, 
coupled analysis of specific soil-foundation-structure systems is preferable to decoupled 
analysis, the decoupled approach provides a useful degree of flexibility in exploring the response 
of different systems. 

3.5.1 Calculation of Response 

Following the logic described in Section 3.3.3, a general expression for response hazard 
including the load measure intermediate variable can be written as 

 ∫∫= )()|()|()( IMIMLDMEEDP λλ dMdGDPG     (3.30) 

For practical purposes, a scalar response hazard curve can be obtained by numerical integration 
of the form 
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The modified response prediction can also be performed in modular fashion with a LM 
hazard curve being computed from a ground motion hazard curve, and a response hazard curve 
computed using the LM hazard curve. 
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Regardless of whether the response hazard curve is computed directly or in modular 
form, the preceding equations can be applied to ground motion hazard curve, load, and response 
models with any characteristics.  The accuracy of the response hazard will depend on the number 
of IM and LM increments over which the numerical integration is accomplished. 

3.5.2 Closed Form Solution for Response 

The closed-form solution for response is also based on assumption of a power law relationship 
between mean annual rate of exceedance and IM described in Equation 3.4.  The response of a 
bridge foundation, expressed in terms of displacements and rotations, is a function of the 
earthquake ground motion, the dynamic response of the foundation, and the dynamic response of 
the structure supported by the foundation.  The nature of the loading applied to a pile group, 
therefore, is strongly influenced by the dynamic response of the structure, which will be sensitive 
to the specific characteristics of the individual structure.  In the modified framework, the load 
measure, LM, is a function of the ground motion and structural response.  If the loading model is 
assumed to be of power law form 
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 bIMaLM )(=  (3.33) 

with lognormal dispersion ( IMLML |lnσβ = ), a closed-form solution for the resulting LM hazard 
curve can be expressed as 
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If the response model is also assumed to be of power law form 

 eLMdEDP )(=  (3.35) 

with lognormal dispersion ( LMEDPR |lnσβ = ), a closed-form solution for the resulting EDP hazard 
curve can be expressed as 
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This equation describes the mean annual rate of exceeding some level of response, EDP 
= edp, given the seismic hazard curve, which is the result of a probabilistic seismic hazard 
analysis, a probabilistic loading model, and a probabilistic response model.  It therefore 
considers all possible values of IM rather than only those corresponding to the small integer 
number of return periods considered in conventional design, and all levels of foundation loading 
given the various levels of ground shaking.  The right side of Equation (3.36) is composed of two 
parts, the first of which is a function of edp and the constants (k0, k, a, b, d, e) that describe the 
mean hazard curve, median LM-IM relationship (i.e., the load model), and the median EDP-LM 
relationship (i.e., the response model).  The second part depends on the slopes of the hazard 
curve, median loading model relationship, median response model relationship and, most 
significantly, on the uncertainty in the loading and response models.  The second term can be 
viewed as an “uncertainty multiplier” since its value is 1.0 when there is no uncertainty in the 
loading and response models and becomes progressively greater than 1.0 as the loading and/or 
response model uncertainty increases.  This result shows that the mean annual rate of exceedance 
of a particular EDP value increases with increasing uncertainty.  Put differently, the EDP value 
corresponding to a given mean annual rate of exceedance (or return period) increases with 
increasing loading and/or response model uncertainty. 

3.6 SUMMARY 

This chapter has presented a discussion of seismic performance and a probabilistic framework 
for seismic performance evaluation.  With this framework, the return periods of various levels of 
response, damage, and loss can be predicted in a probabilistically rigorous manner, i.e., with 
consideration of uncertainties in ground motions, seismic response, physical damage, and loss 
estimation.   
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The performance-based framework described in this chapter can be viewed as an 
extension of probabilistic seismic hazard analysis (PSHA), a technology that has become widely 
accepted for seismic design.  Rather than designing for a deterministically-obtained level of 
response from a probabilistically-defined ground motion, a probabilistic representation of 
response given some ground motion can be combined with a probabilistic representation of 
ground motion hazards to obtain a fully probabilistic representation of response.   

Design based on the fully probabilistic representation of response, as described in 
Chapter 6, allows more accurate, objective, and consistent prediction of performance in areas of 
different seismicity and using design procedures of different reliability.   
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4 Numerical Model of Pile Group Response 

4.1 INTRODUCTION 

To evaluate the seismic performance of pile foundations, a series of analyses of a pile group 
were performed using two types of numerical models.  First, a structural model was used to 
predict the pile cap loading given the response of a simplified bridge structure to an applied input 
motion.  Next, a soil-foundation model was used to predict the displacements and rotations of the 
pile foundation in response to the pile cap loading.   

The details of the numerical models and overall pile group modeling concept are 
discussed in this chapter.  Input and output parameters, and the strategies used to measure 
seismic response of the pile group are included in this discussion.  First, a more detailed 
description of the pile foundation model is provided.  Next, the numerical modeling framework 
(OpenSees) that was used to simulate response is introduced.  To validate the numerical model, 
evidence in the form of comparisons with a full-scale static load test and dynamic centrifuge 
testing is presented.   

4.2 SOIL-FOUNDATION-BRIDGE MODELING CONCEPT 

As discussed in Chapter 3, there are an infinite number of different combinations of bridge types, 
pile group configurations, and soil conditions.  Each combination will have a unique response, so 
predicting the response of a particular system requires a complete soil-foundation-bridge model 
for that system.  For maximum accuracy, that model should be developed using software that 
represents soil and structural response, and the interaction between them, with high and equal 
rigor.  Few software packages currently available have such capabilities, and their use is very 
time-consuming.  The results of such analyses would correspond to the particular details of the 
soil-foundation-structure system being modeled, and generalization of the computed response to 
other conditions would be difficult.  For the purposes of this project, which seeks to provide pile 
foundation design guidance for a wide range of soil, foundation, and structure characteristics, 
such an approach is not tenable. 

For this project, a framework with the ability to create response models for many 
different pile group configurations in many different soil profiles was developed.  The 
framework is basically that of a substructuring approach to soil-foundation-structure interaction.  
The soil-foundation-structure system is broken down into two systems – the structure and the 
foundation – each of which is analyzed separately.  The purpose of the structural analysis is to 
compute realistic loading histories at the top of the pile cap.  The second analysis then computes 
the response of the pile cap to the imposed loading.   
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The following sections describe the basic aspects of the structural and pile group models 
and present typical results from both models. 

4.2.1 Bridge Modeling 

The structural model used to represent a bridge was kept simple in order to provide foundation 
loading histories general enough to be applicable to bridges with different characteristics.  The 
bridge structure was idealized as a lumped mass at the top of a single distributed-mass column.  
The column was modeled in OpenSees as having both lateral and axial stiffness through the use 
of a fiber model.  As a result, the bridge would respond dynamically to all three components of 
input ground motions. 

4.2.1.1 Structural Model 

A schematic illustration of the structural model is shown in Figure 4.1.  The characteristics of the 
structure were developed to be consistent with typical highway bridges of the types that might be 
designed by agencies such as WSDOT and Caltrans.  Based on discussions with Caltrans and 
WSDOT engineers, structures with fundamental periods of 0.5 sec and 1.0 sec were analyzed.  
The supported mass was chosen to produce a desired level of initial static vertical load in the pile 
group of interest.  The column sections were chosen to be consistent with those used in ATC-49.  
Finally, the heights of the columns were selected to produce the desired fundamental period with 
the selected supported mass and column flexural stiffness. 

 

Figure 4.1   Schematic illustration of forces 
and moments acting on pile cap.  
Subscripts ‘s’ and ‘d’ refer to 
static and dynamic loads, 
respectively.  Loads and 
moments for only one horizontal 
directions is shown here for 
clarity – the same loads and 
moments exist in the orthogonal 
horizontal direction. 

 

In order to evaluate the influence of column yielding on pile foundation response, a 
number of analyses were performed using nonlinear column models.  These models used fiber 
models that could produce a desired column yield moment. 
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4.2.1.2 Foundation Model 

The base of the column was assumed to be connected to a pile group with a rigid pile cap 
embedded in a soil profile of interest.  In the OpenSees model, however, the pile group and pile 
cap were represented by equivalent springs and dashpots whose properties were computed using 
the DYNA4 computer program (Novak et al., 1993).  DYNA4 allows consideration of the 
contributions of the piles and pile caps to pile group stiffness and damping.  The OpenSees 
model was developed with springs and dashpots representing translational and rocking degrees 
of freedom at the base of the column; rotation about the vertical axis, i.e., torsion, was not 
modeled as it was not considered to produce a significant level of response in the types of typical 
bridge structures that are the subject of this research. 

4.2.1.3 Equivalent Linear Analysis Procedure 

DYNA4 assumes linear elastic behavior of the soil and the foundation elements, and computes 
stiffness and damping coefficients as functions of frequency.  Since soils are known to exhibit 
nonlinear behavior, an equivalent linear procedure was used to approximate the effects of soil 
nonlinearity.  DYNA4 analyses were performed for different soil shear moduli to account for the 
softening associated with nonlinear soil behavior.  The results of these analyses were used to 
express the spring and dashpot coefficients as functions of pile cap displacement/rotation. 

The structural model was then analyzed by applying three components of ground motion 
to the ends of the spring-dashpot assemblies at the base of the column in the OpenSees structural 
model.  The response of the model was computed, including the displacements and rotations of 
the base of the column.  These displacements and rotations were compared with the values 
corresponding to the foundation impedances used in the analysis.  If the displacements and 
rotations differed by more than 2%, new impedance factors corresponding to the computed 
displacements and rotations were substituted for the original impedance factors and the analysis 
repeated.  This procedure was repeated until the computed displacements and rotations of the 
pile cap were compatible with the impedance factors. 

4.3 NUMERICAL MODELING USING OPENSEES 

To simulate the seismic response of a pile foundations, both structural and geotechnical models 
that account for soil-structure interaction for a range of input parameters must be included in the 
model.  The Open System for Earthquake Engineering Simulation (OpenSees) is a finite element 
program developed by the Pacific Earthquake Engineering Research (PEER) Center that is well 
suited to capture the seismic response of pile foundations 
(http://opensees/berkeley.edu).OpenSees is capable of modeling 1D, 2D and 3D nonlinear 
structural and geotechnical systems using a variety of different structural and geotechnical 
material models. 

A finite element model of a pile group and pile cap system was constructed in OpenSees.  
This pile group system was subjected to multiple static load states and multiple dynamic load 
states as calculated in the structural dynamic analysis.  All dynamic loads were applied to the 
pile cap.  The response that was measured included horizontal displacements, vertical 
displacements, and rocking rotations (e.g. , , , , , ).   
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4.3.1 Dynamic BNWF Model 

The Beam-on-Nonlinear-Winkler-Foundation (BNWF) method is commonly used for simulating 
soil-pile interaction.  In a BNWF model, the pile is modeled by a beam supported by a series of 
independent horizontal and vertical springs distributed along its length.  A 1-D shear beam soil 
column can be used to provide free-field (far-field) motion and interface springs ( - , - , 
and - ) can be used to model soil-pile-structure interaction (near-field).  It is also possible to 
attach a structural model to the top of the pile in a BNWF model. 

A schematic of the OpenSees response model used in this research is shown in Figure 
4.2. The superstructure and free-field soil motion were not modeled.  The soil profiles considered 
in this investigation did not have strong impedance contrasts and did not contain liquefiable 
soils.  As a result, kinematic interaction effects were expected to be negligible.  Dynamic loading 
occurred only at the pile cap and - , - , and -  springs provided soil resistance.   

 

 

Figure 4.2.   Schematic of BNWF model with interface springs (after Shin, 2007) 

4.3.2 Material Models 

To capture the response of the pile group system, specific material models were used in 
OpenSees to model piles, pile cap, -  springs, -  and -  springs, and pile cap springs.   

- springs were included to account for the lateral soil-pile interaction.  The interface 
springs included elastic, plastic, and gap components connected in series.  The -  backbone 
curves for sand were based on the sand relation of API (1993).  The ultimate lateral soil 
resistance, , and the deflection at one-half the ultimate soil resistance, , were calculated 
according to procedures outlines in API (1993).  The -  backbone curves for clay were based 
on the soft clay relation of Matlock (1970).  The inputs,  and were also calculated based 
on Matlock (1970. 
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To account for the vertical soil-pile interaction, the relationship between frictional shaft 
resistance and local deflection was modeled using -  springs.  The -  backbone curves were 
based on Reese and O’Neill (1987)’s relation for piles in clay and Mosher (1984)’s relation for 
piles in sand (Reese and O’Neill, 1987; Mosher, 1984).  - springs were used to model the 
relationship between point resistance and deflection at the bottom of the pile.  The -  
backbone curves were based on Reese and O’Neill (1987)’s relation for drilled shafts in clay and 
Vijayvergia’s relation for piles in sand (Vijayvergiya, 1977).  Input values of , , and  
were calculated according to procedures outlined in API (1993). 

To capture the response of the pile group, pile elements were modeled using elastic beam 
elements.  The pile cap consisted of very stiff elastic beam elements.  Both pile and pile cap 
elements were massless.   

4.4 MODEL VALIDATION 

The use of the OpenSees framework as a response model for the seismic evaluation of pile 
foundations is validated by comparison with model test and field load test behavior.  Shin (2007) 
showed that numerical modeling strategies used in OpenSees were capable of modeling soil-pile-
structure interaction well.  Shin’s results validated the use of OpenSees to model the seismic 
performance of pile foundations.   

Based on Shin’s results, a pile group model was developed in OpenSees for use in this 
research.  To verify the accuracy of the pile group model under static conditions, the results of a 
comparison between the OpenSees model and a case history of a large scale lateral load test are 
presented and discussed (Brown et al., 1988).  To illustrate the ability of OpenSees to accurately 
simulate the response under seismic conditions, the results of simulations performed by Shin 
(2007) are also reviewed. 

4.4.1 Static Loading 

The OpenSees framework may be a sound approach to the seismic design of pile foundations, 
but numerical simulations are only useful if they can consistently predict response to an 
acceptable degree of accuracy.  The results of a large-scale load test on a pile group reported by 
Brown, et al. (1988) were used to validate the accuracy of the static response of the model used 
in this research.  The load test was modeled in OpenSees to show that the model is capable of 
producing accurate results that are consistent with current design practices. 

A study was conducted at the University of Texas concerning the behavior of a closely 
spaced group of piles in sand when subjected to cyclic lateral loading (Brown et al., 1988).  The 
research included a large-scale lateral load test of a group of nine steel pipe piles in sand as well 
as a load test of a single isolated pipe pile for comparison.  The configuration is shown in Figure 
4.3.  Piles were founded in soil consisting of 9.5 ft (2.9 m) of medium dense sand underlain by 
very stiff clay.  Because the sand extended to a depth slightly greater than 10 pile diameters, the 
response of the piles to lateral loading was dominated by the sand.  Results from direct shear 
tests on the sand indicated an angle of internal friction of 38.5 degrees and a dry density of 98.5 
lb/ft3 (1.58 g/cm3).  Piles consisted of 10.75 in. (27.3 cm) outside diameter piles, with 0.365 in. 
(9.27 mm) wall thickness.  The pile group was arranged in a 3x3 configuration with a center-to-
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center spacing of 3 diameters.  The piles were instrumented to measure the load on the top of 
each pile and the distribution of bending stresses along the length of each pile.   

 

 

Figure 4.3.   Site layout and test set up (Brown et al., 1988) 

OpenSees simulations were performed to model the full scale test for both a single pile 
and the pile group.  The focus of the comparison was not only to check the general level of 
agreement between predicted and measured response, but also to calibrate -multipliers to 
account for group effects.  A quick comparison of results shows that a general consistency 
between measured results and numerical results in OpenSees can be obtained.   

4.4.1.1 Single Pile 

A comparison of the behavior of a single isolated pile was made.  Figure 4.4 shows the lateral 
load vs. deflection for the single pile.  Circles (SP actual) represent actual measured values from 
the field test.  In the field test, the single pile was less stiff than the group piles.  To make the 
single pile behavior comparable to the group pile behavior, Brown et al. (1988) applied a 
correction factor to account for the reduced stiffness in the single pile.  The solid line (SP stiff) 
represents the projected curve after the correction was made.  The projected response (solid 
lines) from Brown et al. (1988) agrees well with the simulated response (dotted line) from 
OpenSees (OS).  Figure 4.5 shows the bending moment in the pile vs. depth for a single pile.  
Again, the measured values closely match the numerical values. 
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Figure 4.4.   Lateral load vs. deflection for a single pile in sand 

 

Figure 4.5.   Bending moment vs. depth for a single pile in sand 

4.4.1.2 Pile Group 

When loaded to a similar average per pile load, the group piles deflected more than the single 
isolated pile.  This is shown Figure 4.6 by the relative position of the curve for the single pile 
(SP) compared to the curves for a pile in the leading row (LR), a pile in the middle row (MR), 
and a pile in the back row (BR) of the pile group.  That is, with the pile group there is a reduction 
in resistance at a given displacement level that needs to be accounted for.  For example, the piles 
in the leading row of a pile group subjected to lateral loading will be significantly stiffer than 
piles in trailing rows due to group effects.  To account for the reduced capacity, p-multipliers 
were introduced to the OpenSees model.   
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Figure 4.6.   Load vs. deflection for single pile and pile group by row (after Brown et al., 1988) 

Typical -multipliers of 0.8, 0.4, and 0.3 were used for the leading, first trailing, and 
second trailing rows, respectively (Brown and Bollman, 1993; Hannigan et al., 1997).  The p-y 
curves for sand were based on the sand relation of API (1993).  Figure 4.7 shows the computed 
load-transfer relationships at a depth of one meter in sand for leading, first trailing, and second 
trailing rows of the pile group.  These curves are representative of all curves that were obtained.  

 

Figure 4.7.   Typical p-y curves by row position for piles in group 

Brown et al. (1988) compared measured data from the load test to predicted response 
from analytical methods.  Brown noted that due to increased shear strength produced by 
densification, computed -  curves significantly underpredicted soil resistance when compared 
to large-scale load test data.  Brown et al. (1988) varied input soil parameters so that computed 

-  curves matched measured -  curves and obtained back-calculated soil parameters, and 
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found that an increase in friction angle from 38.5 to 50 degrees was required to account for the 
densification that apparently occurred during driving.  Therefore, to simulate the measured 
response of the laterally loaded pile group, the same back-calculated soil properties used in 
OpenSees.  Figure 4.8 shows a comparison of computed load-transfer relationships using actual 
and back-calculated soil properties. 

 

Figure 4.8.   Comparison of experimental and computed p-y curves for a single pile 

Using -multipliers of 0.8, 0.4, and 0.3 for the leading, first trailing, and second trailing 
rows, respectively, and back-calculated soil properties, good agreement between simulated 
response from OpenSees and measured response from Brown et al. (1988) was obtained as 
shown in Figures 4.9 to 4.14. 

 
 

Figure 4.9.   Plot of pilehead load vs. deflection for the second trailing row of a 3x3 pile group – 
comparison of OpenSees response (OS BR) to measured response (BR) 
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Figure 4.10.   Plot of pilehead load vs. deflection for the first trailing row of a 3x3 pile group – 
comparison of OpenSees response (OS MR) to measured response (MR) 

 

Figure 4.11.  Plot of pilehead load vs. deflection for the leading row of a 3x3 pile group – 
comparison of OpenSees response (OS LR) to measured response (LR) 
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Figure 4.12.   Plot of bending moment vs. depth for the second trailing row of a 3x3 pile group – 
comparison of OpenSees response (OS BR) to measured response (BR) 

 

Figure 4.13.   Plot of bending moment vs. depth for the middle row of a 3x3 pile group – 
comparison of OpenSees response (OS MR) to measured response (MR) 
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Figure 4.14.   Plot of bending moment vs. depth for the leading row of a 3x3 pile group – 
comparison of OpenSees response (OS LR) to measured response (LR) 

4.4.2 Dynamic Loading 

Shin (2007) showed that the OpenSees framework could predict the measured dynamic response 
of model pile foundations to an acceptable degree of accuracy.  To understand and validate 
numerical modeling strategies to capture soil-pile-structure interaction of bridge structures, Shin 
first performed a set of instrumented centrifuge experimental tests at UC Davis.  The test setup, 
shown in Figure 4.15, included multiple pile lengths, stiffnesses, and group configurations that 
were subjected to multiple motions at multiple intensity levels. 

 

Figure 4.15.   Schematic drawing and test setup for single pile, two-pile bents, and two span 
bridge (Shin, 2007) 
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The centrifuge experiments were modeled in OpenSees using dynamic Beam-on-
Nonlinear-Foundation (BNWF) models based on conventional -  springs for typical 
earthquake scenarios.  In his research, Shin validated the OpenSees BNWF model by comparing 
centrifuge responses with numerical responses for a bent, a single pile, and a two span bridge.  
The comparison showed that the measured centrifuge response under dynamic conditions could 
be captured well by simulations in OpenSees. 

4.4.2.1 Dynamic Response of a Pile Bent Structure 

The dynamic response of the two-column bent structure, Bent-M2 from Figure 4.17, and its 
corresponding simulated response were compared.  The measured centrifuge response and the 
simulated response were in good agreement for moderate shaking levels as shown by the 
comparison of acceleration time histories in Figure 4.16 and the comparison of pile bending 
moments in Figure 4.17. 

 
(a) Northridge motion,  

 
(b) Northridge motion,  

 

Figure 4.16.   Superstructure acceleration time histories for Bent-M2 obtained from centrifuge 
test and numerical simulations (Shin, 2007) 
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(a) Northridge motion,   (b) Northridge motion,  

 

Figure 4.17.   Maximum pile bending moments for Bent-M2 obtained from centrifuge test and 
numerical simulations (Shin, 2007) 
 

4.4.2.2 Dynamic Response of a Two-Span Bridge 

The centrifuge test results and numerical response of the two-span bridge can also be compared.  
The two-span bridge had three foundations, labeled Bent-S, Bent-L, and Bent-M as shown in 
Figure 4.17, that supported columns of short, long, and medium heights.  The differing 
stiffnesses of the columns caused more complex soil-foundation-structure interaction than would 
have occurred with constant column heights.  Nevertheless, the measured centrifuge response 
and the simulated response were in good agreement for moderate shaking levels as shown by the 
comparison of acceleration time histories in Figure 4.18 and the comparison of pile bending 
moments in Figure 4.19.  
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Figure 4.18.   Centrifuge and OpenSees bridge deck acceleration time histories at three bent 
locations for Northridge event,  (Shin, 2007) 

 
(a) Bent-S    (b) Bent-L    (c) Bent-M 

 

Figure 4.19.   Centrifuge and OpenSees pile bending moments for Northridge event, amax = 0.25g  
(Shin, 2007) 
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4.5 SUMMARY 

In this chapter, the numerical models used in this research to evaluate seismic performance of 
pile foundations were introduced and described in detail.  The numerical modeling framework 
(OpenSees) that was used to simulate response was introduced and validated.  To validate the 
numerical model, evidence in the form of comparisons with a full-scale static load test and 
dynamic centrifuge testing was presented.  Comparisons of results obtained from experimental 
tests and OpenSees numerical simulations showed good agreement.  The BNWF models based 
on conventional p-y springs captured the dynamic response of the centrifuge tests fairly well.  
Therefore, using similar modeling strategies, OpenSees simulations can be used to evaluate the 
seismic design of pile foundations.   
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5 OpenSees Modeling of Bridge Foundation 
Response 

5.1 INTRODUCTION 

As discussed in Chapter 3, an infinite number of possible combinations of bridge types, pile 
group configurations, and soil conditions must be considered when developing general design 
procedures for bridge foundations.  Each combination will produce a unique response, so 
predicting the response of a particular system would require analysis of a complete soil-
foundation-bridge model for that system.  For maximum accuracy, that model should be 
developed using software that represents soil and structural response, and the interaction between 
them, with high and consistent levels of rigor.  Few software packages currently available have 
such capabilities, and their use is generally very time-consuming.  The results of such analyses 
would correspond to the particular details of the soil-foundation-structure system being modeled, 
and generalization of the computed response to other conditions would be difficult.  For the 
purposes of this project, which seeks to provide pile foundation design guidance for a wide range 
of soil, foundation, and structure characteristics, such an approach is not tenable. 

To evaluate the general seismic performance of pile groups used as bridge foundations, a 
series of analyses were performed using two types of numerical models.  To maximize the 
generality of the process, the structural and foundations models were kept relatively simple and 
straightforward.  The modeling process made use of the intermediate load measure variable 
introduced in Section 3.x in order to allow foundation response to be computed from the 
response of different structural responses.   

5.2 SOIL-FOUNDATION-BRIDGE MODELING CONCEPT 

For this project, a framework with the ability to create response models for many different pile 
group configurations in many different soil profiles was developed.  The framework is basically 
that of a substructuring approach to soil-foundation-structure interaction, as illustrated in Figure 
5.1.  The soil-foundation-structure system is broken down into two systems – the structure and 
the foundation – each of which is analyzed separately.  First, a structural model was used to 
predict the pile cap loading (i.e., the load measure, LM, introduced in Chapter 3) given the 
response of a simplified bridge structure to an applied input motion.  Next, a soil-foundation 
model was used to predict the displacements and rotations of the pile foundation in response to 
the pile cap loading.  The purpose of the structural analysis is to compute realistic loading 
histories at the top of the pile cap.  These histories are consistent with the recorded ground 
motions used to compute them and with the dynamic characteristics of a bridge.  While they 
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correspond to the response of a very simple structure, they account for realistic response 
characteristics including correlations between the various components of loading applied to pile 
groups.  The second analysis then computes the response of the pile cap to the imposed loading.   

 

 
 

Figure 5.1   Schematic illustration of substructuring process used to separate response 
analysis into structural and geotechnical components.  Note that rotational springs 
used in analysis are not shown. 

The following sections describe the basic aspects of the structural and pile group models 
and present typical results from both models. 

5.2.1 Bridge Structure Modeling 

The structural model used to represent a bridge was kept simple in order to provide foundation 
loading histories general enough to be applicable to bridges with different characteristics.  Two 
approaches were taken over the course of the research.  Initially, structural analyses were 
performed using the SAP2000 computer program, a program widely used for dynamic analysis 
of bridges and other structures.  Later, the same calculations were performed in OpenSees, a 
more general finite element package that has strong soil as well as structural modeling 
capabilities; the results of the OpenSees analyses were confirmed as being consistent with those 
obtained using SAP2000.  The results presented in this report are based on the OpenSees 
analyses.   

The bridge structure was idealized as a concentrated mass at the top of a single 
distributed-mass column.  The column was modeled as having both lateral and axial stiffness 
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through the use of a fiber model.  As a result, the bridge structure responds dynamically to all 
three components of input ground motions.  Five components of loading – vertical load, Q, 
lateral loads, Vx and Vy, in the x- and y-directions, and overturning moments, Mx and My, about 
the y- and x-axes – were recorded in each analysis. 

5.2.1.1 Structural Model 

The characteristics of the model structure were developed to be consistent with typical highway 
bridges of the types that might be designed by agencies such as WSDOT and Caltrans.  Based on 
discussions with Caltrans and WSDOT engineers, structural models with fundamental periods of 
0.5 sec and 1.0 sec were analyzed.  The supported mass was chosen to produce a desired level of 
initial static vertical load in the pile group of interest.  The column sections were chosen to be 
consistent with those used in ATC49, a set of LRFD guidelines developed by the Applied 
Technology Council and the Multidisciplinary Center for Earthquake Engineering Research.  
The column sections were circular with 48-inch diameters, variable lengths, and a flexural 
stiffness of 5.9x109 k-in2.  The heights of the columns were selected to produce the desired 
fundamental period with the selected supported mass and column flexural stiffness.  In order to 
evaluate the influence of column yielding on pile foundation response, a number of analyses 
were performed using nonlinear column models.  These models used fiber models (Section 4.2.2) 
that would produce a desired column yield moment.  Table 5.1 summarizes the characteristics of 
the structural models used in the analyses. 

Table 5.1   Characteristics of model bridge structure 

Pile Group Configuration 

Property 
3x3 3x5 3x7 5x5 7x7 

To = 0.5 To = 1 To = 0.5 To = 1 To = 0.5 To = 1 To = 0.5 To = 1 To = 0.5 To = 1 
W (k) 687 687 1145 1145 1603 1603 1908 1908 3740 3740 
A (in2) 1810 1810 1810 1810 1810 1810 1810 1810 1810 1810 
I (ft4) 79.419 79.419 79.419 79.419 79.419 79.419 79.419 79.419 79.419 79.419 

E (ksi) 3605 3605 3605 3605 3605 3605 3605 3605 3605 3605 
L (ft) 32 53 28 44 25 40 24 38 19 30 

5.2.1.2 Foundation Compliance 

 The base of the column was assumed to be connected to a pile group with a rigid pile cap 
embedded in a soil profile of interest.  Because the response of the structure, which produces the 
computed pile cap loading, is affected by the dynamic behavior of the foundation, the 
compliance of the structural foundation was taken into account.  In the OpenSees structural 
model, the pile group and pile cap were represented by discrete equivalent springs and dashpots 
at the base of the column.  The properties of these elements were computed using the DYNA4 
soil-structure interaction computer program (Novak et al., 1993).  DYNA4 allows modeling of 
the response of piles and pile caps in layered elastic profiles.  DYNA4 provided 5x5 impedance 
matrix functions from which spring and dashpot coefficients for translational (3) and rocking (2) 
degrees of freedom of the pile cap could be extracted; rotation about the vertical axis, i.e., 
torsion, was not modeled as it was not considered to produce a significant level of response in 
the types of typical bridge structures that are the subject of this research. 
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5.2.1.3 Equivalent Linear Analysis Procedure 

DYNA4 assumes linear elastic behavior of the soil and foundation elements, and computes pile 
group impedances as functions of frequency.  Examination of the DYNA4 output showed that 
stiffness and damping varied only weakly with frequency in the frequency range of interest.  
Since soils are known to exhibit nonlinear behavior, however, an equivalent linear procedure was 
used to approximate the effects of soil nonlinearity.  DYNA4 analyses were performed for 
different soil shear moduli to account for the softening associated with nonlinear soil behavior.  
The results of these analyses were used to express the spring and dashpot coefficients as 
functions of pile cap displacement/rotation. 

The structural model was then analyzed by applying three components of ground motion 
to the ends of the spring-dashpot assemblies at the base of the column in the OpenSees structural 
model.  The response of the model was computed, including the displacements and rotations of 
the pile cap.  These displacements and rotations were compared with the values corresponding to 
the foundation impedances used in the analysis.  If the displacements and rotations differed by 
more than 1%, new impedance factors corresponding to the computed displacements and 
rotations were substituted for the original impedance factors and the analysis repeated.  This 
procedure was repeated until the computed displacements and rotations of the pile cap were 
compatible with the impedance factors.  Five components of pile cap load – Q, Vx, Vy, Mx, and 
My – were recorded for each analysis; these loading histories were saved for use in the 
foundation response analyses and for computation of load measures. 

5.2.2 Foundation Modeling 

The combination of structural and soil models available in OpenSees allows modeling of pile 
foundations in a number of ways.  While it is possible to model piles as three-dimensional 
structural elements embedded in three-dimensional soils with interface elements, such models 
have so many degrees of freedom that their use is impractically time-consuming for the purposes 
of this research.  A common compromise between rigor and computational efficiency is provided 
by the use of discrete, zero-length elements to describe the interaction between pile foundations 
and the surrounding soil.  The general behavior of OpenSees pile group models was described in 
Chapter 4.  The following sections describe the main components of the specific OpenSees 
foundation models used in this investigation. 

The OpenSees pile group models were subjected to the loading histories computed in the 
structural response analyses.  Each structural analysis produced time histories of vertical load, Q, 
lateral loads, Vx and Vy, and overturning moments, Mx and My.  These loads were applied at the 
center of the upper surface of the pile cap as illustrated schematically in Figure 5.2.  For each 
analysis, five components of pile cap movement – vertical displacement, w, lateral 
displacements, u and v, in the x- and y-directions, and rocking rotations, θx and θy, about the y- 
and x-axes – were recorded. 
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Figure 5.2.   Schematic illustration of OpenSees pile group model showing only three loading 
components and one plane of p-y elements. 

5.2.2.1 Piles 

The response analyses performed in this research are based on 60-ft-long, 24-inch diameter steel 
pile piles with ½-inch thick walls.  In OpenSees, the piles were modeled with a series of 18 3.33-
ft-long fiber beam elements connected end-to-end.  P-y and t-z elements were attached to the 
piles at 3.33-ft increments along their entire lengths.  A Q-z spring was attached to the base of 
each pile. 

5.2.2.2 Pile Groups 

The basic pile group model consisted of a pile cap supported by a group of NxM piles where  N 
is the number of piles in the x-direction and M is the number of piles in the y-direction.  A pile 
group generator program was written so that piles could be spaced at arbitrary center-to-center 
distances, Dx and Dy.  A variety of pile group configurations, including 3x3, 3x5, 3x7, 5x5, and 
7x7, were used in the foundation response analyses.   

5.2.2.3 Pile Caps 

The pile caps were modeled as being virtually rigid using a frame of rigidly connected beam 
elements.  Two levels of beam element frames connecting the piles in both the x-direction and 
the z-direction were rigidly attached by a 3.5-foot-long beam element in the y-direction.  The 
piles were assumed to be rigidly connected to the pile cap. Since the top of the pile cap is flush 
with the ground surface, p-y springs were used to model the relationship between passive earth 
pressures and the movement of the pile cap. 
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5.3 SOIL CONDITIONS 

To develop generally applicable results, the analyses were performed assuming the piles were 
installed in different soil profiles.  Pile foundations are known to behave differently when 
installed in cohesive and cohesionless soil profiles, and procedures for prediction of pile 
response often use parameters that are divided into those two categories.  Therefore, the pile 
foundations modeled in this study were assumed to be embedded into two profiles – a sand 
profile and a clay profile.  Modification of the pile capacities, intended to represent variability in 
soil profile characteristics, were included in some of the analyses. 

5.3.1 Sand Profile 

The sand profile was assumed to consist of a deep deposit of medium-dense dry sand with a unit 
weight of 125 pcf.  The sand was assumed cohesionless with a friction angle of 36o and to 
correspond to an SPT resistance, (N1)60 ~ 20.  A shear wave velocity profile for the sand profile 
is plotted in Figure 5.3. 

 

Figure 5.3   Shear wave velocity profiles for sand and clay soil profiles. 

5.3.2 Clay Profile 

The clay profile was assumed to consist of a deep deposit of medium stiff, uniform clay with an 
undrained strength of 3,000 psf.  The shear wave velocity of the clay was assumed to be 
proportional to undrained strength, and therefore constant with depth as shown Figure 5.3.   

5.4 STATIC LOADING CONDITIONS 

A given pile group supporting a bridge will be subjected to some set of static loads prior to the 
occurrence of an earthquake.  These static loads can include virtually any combination of vertical 
load, lateral loads (in two orthogonal directions), and overturning moments (about two 
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orthogonal axes).  The relative magnitudes of these loads depend on the individual characteristics 
of the bridge, the site at which it is constructed, and on its foundations.  When an earthquake 
occurs, additional dynamic loads are imposed upon the pile group – these include all five 
components (three loads and two overturning moments) and also depend on the specific 
characteristics of the bridge and foundation. 

5.4.1 Static Load Response 

A pile group supporting a bridge column will displace and/or rotate as loads are applied to it 
during construction.  The OpenSees pile group model allows calculation of such displacements 
for any combination of static vertical, lateral, and overturning loads.  The static design of pile 
foundations seeks, directly or indirectly, to prevent displacements from becoming excessively 
large.  Large pile group movements under static loading can induce high bending and shear 
demands in a bridge structure, and in the pile group itself. 

5.4.1.1 Reference Loads 

To denote the proximity of the initial static load state to “failure,” the notion of a reference load 
is introduced.  The conventional idea of a pile group “capacity” implies that some dramatic effect 
is likely to occur if an applied load exceeds that capacity.  In reality, exceeding a particular load 
capacity will lead to some additional pile group movement, the amount of which may be small or 
relatively large depending on the nature of the load-displacement behavior of the foundation.  A 
reference load will be defined, for the purposes of this research, as a load level beyond which the 
accumulation of pile cap displacements becomes increasingly undesirable.  The reference loads 
for this project were defined as: 

Vertical loading: Qref = load corresponding to static capacity as determined from 
simulation of a pile group load test using Davisson (ref) criterion. 

Lateral loading: Vref = lateral load producing lateral displacement equal to 10% of pile 
diameter in simulations of pile group lateral load test. 

Overturning:  Mref = moment applied in one direction causing vertical movement of 
any pile equal to that corresponding to Qref. 

Reference load values for pile groups of different configurations are shown for the sand 
and clay profiles in tables 5.2 and 5.3. 
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Table 5.2   Sand profile reference loads Table 5.3   Clay profile reference loads 

Vertical Reference Loads (kN) 
Nx/Ny 3 5 7 

3 43676 72793 101911 
5 72793 121322 - 
7 0 - 237791 

 

Vertical Reference Loads (kN) 
Nx/Ny 3 5 7 

3 7778 12964 18149 
5 13352 22254 - 
7 18211 - 42493 

 

 
Horizontal Reference Loads (kN) 

Nx/Ny 3 5 7 
3 10850 17820 24790 
5 20238 33704 - 
7 28392 - 66192 

 

 
Horizontal Reference Loads (kN) 

Nx/Ny 3 5 7 
3 17882 29806 41728 
5 29806 49673 - 
7 41728 - 97360 

 

 
Reference Moments (kN-m) 

Nx/Ny 3 5 7 
3 43870 55102 62827 
5 113612 160699 - 
7 221353 - 411509 

 

 
Reference Moments (kN-m) 

Nx/Ny 3 5 7 
3 28028 38230 46911 
5 69550 102147 - 
7 128418 - 259323 

 

 

5.4.1.2 Reference Displacements 

Reference displacements and rotations were simply defined as the displacements and rotations 
corresponding to the reference loads and moments.  The reference vertical displacement, wref, is 
the displacement corresponding to the capacity obtained from the Davisson (1972) procedure.  
The reference lateral displacements, uref and vref, are both equal to 10% of the pile diameter.  The 
reference rotations, θx,ref and θy,ref, are the rocking angles that correspond to a maximum pile 
displacement of wref; those angles will depend on the width of the pile group as well as the value 
of wref.  Reference load values for pile groups of different configurations are shown for the sand 
and clay profiles in tables 5.4 and 5.5. 
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Table 5.4   Sand profile reference 
displacements 

Table 5.5   Clay profile reference 
displacements 

Vertical Reference Displacement (m) 
Nx/Ny 3 5 7 

3 0.0277 0.0277 0.0277 
5 0.0277 0.0277 - 
7 0.0277 - 0.0277 

 

Vertical Reference Displacement (m) 
Nx/Ny 3 5 7 

3 0.0167 0.0167 0.0167 
5 0.0167 0.0167 - 
7 0.0167 - 0.0167 

 

 
Horizontal Reference Displacement (m) 
Nx/Ny 3 5 7 

3 0.061 0.061 0.061 
5 0.061 0.061 - 
7 0.061 - 0.061 

 

 
Horizontal Reference Displacement (m) 

Nx/Ny 3 5 7 
3 0.061 0.061 0.061 
5 0.061 0.061 - 
7 0.061 - 0.061 

 

 
Reference Rotation (degrees) 

Nx/Ny 3 5 7 
3 0.9812 0.4906 0.3271 
5 0.9812 0.4906 - 
7 0.9812 - 0.3271 

 

 
Reference Rotation (degrees) 

Nx/Ny 3 5 7 
3 0.6166 0.3083 0.2055 
5 0.6166 0.3083 - 
7 0.6166 - 0.2055 

 

 

5.4.1.3 Normalized Loads and Displacements 

The reference loads will obviously be different for pile groups of different sizes and numbers of 
piles.  One might expect, however, for pile groups loaded at similar fractions of their respective 
reference loads, to exhibit similar behavior.  To allow comparison of the response of different 
pile groups, normalized loads and displacements will be defined as: 

 Qn = Q/Qref  wn = w/wref 
 Vxn = Vx/Vx,ref  un = u/uref 
 Vyn = Vy/Vy,ref  vn = v/vref 
 Mxn = Mx/Mx,ref θyn = θy/θy,ref 
 Myn = My/Mxy,ref θxn = θx/θx,ref 

It should be noted that normalized loads and displacements can be defined for different loading 
conditions, e.g., static, pseudo-static, and dynamic. 

5.4.1.4 Computed Response 

The normalized load-displacement behavior for vertical loading of 3x3, 5x5, and 7x7 pile groups 
is shown in Figure 5.4.  Because the axial resistances of the individual piles are modeled by 
identical t-z and Q-z elements, the normalized vertical load responses are identical.  The 
responses of the pile groups in sand are relatively linear up to normalized loads of about 0.7, and 
the pile groups continue to resist load with significant stiffness at normalized loads greater than 



86 

1.0.  The pile groups in the clay profile show relatively linear behavior up to normalized loads of 
0.7-0.8 but then become strongly nonlinear at higher normalized loads.  Under static loading, the 
vertical displacements of the pile groups in the clay profile increase rapidly as the normalized 
vertical load approaches 1.0. 
(a) 

 

(b) 

 
 

Figure 5.4.   Normalized vertical load response for 3x3, 5x5, and 7x7 pile groups: (a) sand profile, 
(b) clay profile. 

Figure 5.5 shows the normalized lateral load response of 3x3, 5x5, and 7x7 pile groups in 
the sand and clay profiles.  The normalized curves for the three pile groups are very consistent 
across a broad range of response levels.  The normalized response can be seen to exhibit more 
nonlinearity at low loading levels than the vertical loading curves of Figure 5.4.  The response in 
sand is somewhat more linear than that in clay, and the pile groups in sand tend to exhibit 
slightly greater stiffness at normalized loads greater than 1.0.  The responses of the pile groups to 
lateral loading in the sand and clay profiles are much more similar than in the case of vertical 
loading. 
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 (a) 

 

 (b) 

 
 

Figure 5.5.   Normalized horizontal load response for 3x3, 5x5, and 7x7 pile groups: (a) sand 
profile, (b) clay profile. 

The normalized responses of 3x3, 5x5, and 7x7 pile groups to overturning moments are 
shown in Figure 5.6.  Because the resistance to overturning of a pile group comes from 
mobilization of axial resistance of the individual piles, the responses of the pile groups to 
overturning moments shares some of the characteristics of the responses to vertical loading.  The 
pile groups exhibit relatively linear moment-rotation behavior to normalized moments of about 
0.7-0.8 in the sand profile and 0.8-0.9 in the clay profile.  The static curves are also quite 
consistent at normalized moments up to about 1.05; at higher normalized moments, the curves 
diverge with the normalized rotation for a given normalized moment increasing with increasing 
pile group size.  This effect is more pronounced for the pile groups in the clay profile than in the 
sand profile. 

(a) 

 

(b) 

 

Figure 5.6.   Normalized overturning moment response for 3x3, 5x5, and 7x7 pile groups: (a) sand 
profile, (b) clay profile. 
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The results of these analyses show that normalization of pile group response is effective 
to normalized static loads/moments of at least 1.05 for pile groups of different sizes in both the 
sand and clay profiles.  The normalized responses in the sand and clay profiles, however, are 
significantly different.  Because pile foundations are generally designed to support loads that are 
significantly lower than their failure loads, the normalized static loads that exist in actual pile 
foundations prior to earthquake shaking can be expected to be well below 1.0, in which case 
normalization of load-displacement (and moment-rotation) behavior is very effective. 

5.4.2 Static Load Combinations 

In order to produce general results that would cover a wide range of possible bridge 
configurations, a suite of initial static loading states was analyzed.  The initial load states were 
intended to cover a very broad range of initial conditions ranging from relatively low static loads 
to cases where the static loads were significantly higher than would be expected in normal design 
practice.  This wide range allowed development of pile group response relationships that covered 
displacements ranging from very small to quite large.  Table 5.6 presents the normalized static 
loads used in this study.  Static vertical loads, for example, ranged from 20% of the reference 
load (implying FS ≈  5) to 90% of the reference load (FS ≈  1.1).  Lateral loads ranged from zero 
to 67% of the reference load, and overturning moments from zero to 60% of the reference 
moment.  The analysis of all combinations of these static load levels would result in 4 x3 x3 = 36 
initial load states.  The horizontal loads and moments were applied in both the x- and y-
directions. 

Table 5.6   Initial static load states used in analyses. 

 
Qsn = Qs/Qref Vsn = Vs/V,ref Msn = Ms/M,ref 

0.20 0.00 0.00 
0.40 0.33 0.30 
0.67 0.67 0.60 
0.90   

5.5 GROUND MOTIONS 

The analyses were performed with a suite of 50 three-component ground motions selected to 
represent a wide range of potential seismic hazards.  The motions were obtained from the PEER 
NGA database by the following process: 

1. Sort database and extract motions recorded at stations with Vs30 values between 270 m/sec 
and 560 m/sec.  This process led to a set of 2,029 candidate ground motions. 

2. Divide motions into the following nine magnitude-distance (M-R) bins: 
 

Mw < 6.5 
rjb < 20 km 

Mw < 6.5 
20 km < rjb < 50 km 

Mw < 6.5 
rjb > 50 km 

6.5 < Mw < 7.5 
rjb < 20 km 

6.5 < Mw < 7.5 
20 km < rjb < 50 km 

6.5 < Mw < 7.5 
rjb > 50 km 

Mw > 7.5 
rjb < 20 km 

Mw > 7.5 
20 km < rjb < 50 km 

Mw > 7.5 
rjb > 50 km 
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 where Mw = moment magnitude and rjb = Joyner-Boor distance measure. 
3. Divide motions within each M-R bin into 10 amplitude bins based on geometric mean Sa(T 

= 0.5) and Sa(T = 1.0).   
4. Compute ε values for Sa(T = 0.5) and Sa(T = 1.0).  The mean of the median values of the 

Abrahamson-Silva, Boore-Atkinson, Campbell-Bozorgnia, and Chiou-Youngs models were 
used to calculate ε. 

5. For each amplitude bin, select five motions with low ε values and consistent Sa(T = 0.5) 
and Sa(T = 1.0) values. 

This process led to a suite of 50 motions that were (a) well-behaved in term of having 
Sa(T = 0.5) and Sa(T = 1.0) values that were consistent with those predicted by NGA attenuation 
relationships (b) well-behaved in terms of being consistent with each other, and (c) relatively 
uniformly distributed over a wide range of amplitudes.  The response spectra for the 50 motions 
are plotted in Figures 5.7 – 5.9. 

 

 

Figure 5.7   Response spectra for fault normal components of ground motions. 
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Figure 5.8   Response spectra for fault parallel components of ground motions. 

 

 

Figure 5.9   Response spectra for vertical components of ground motions.  
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Some of the motions were processed by removing long periods of leading or trailing 
zeros or by increasing the time step of the motion in order to improve computational efficiency.  
All processed motions were baseline-corrected and compared with the original motions to ensure 
that spectral accelerations in the range of periods of greatest interest (approximately 0.25 – 2 sec) 
were not significantly affected by the processing.  A list of the records used in the analyses is 
presented in Table 5.7. 

Table 5.7.   Ground motions used in response analyses. 

 
Earthquake Record Earthquake Record 

Northridge-01 
Sylmar - Olive View Med 
FF Northridge-01 Sun Valley - Roscoe Blvd 

Loma Prieta LGPC Kocaeli, Turkey Duzce 
Chi-Chi, Taiwan CHY028 Imperial Valley-06 SAHOP Casa Flores 

Northridge-01 
Beverly Hills - 14145 
Mulhol Erzican, Turkey Erzincan 

Kobe, Japan Takarazuka Parkfield 
Cholame - Shandon Array 
#5 

Loma Prieta BRAN Landers Joshua Tree 
Northridge-01 Rinaldi Receiving Sta Imperial Valley-06 Chihuahua 

Cape Mendocino Rio Dell Overpass - FF 
Whittier Narrows-
01 San Gabriel - E Grand Ave 

Northridge-01 Simi Valley - Katherine Rd Northridge-01 
LA - Brentwood VA 
Hospital 

Duzce, Turkey Bolu Chi-Chi, Taiwan NST 
Chi-Chi, Taiwan TCU074 Northridge-01 LA - N Faring Rd 
Loma Prieta Corralitos Northridge-01 LA - UCLA Grounds 

San Salvador Geotech Investig Center 
Whittier Narrows-
01 LA - Obregon Park 

San Salvador National Geografical Inst Cape Mendocino Eureka - Myrtle & West 
Northridge-01 Castaic - Old Ridge Route Kern County Taft Lincoln School 
Cape Mendocino Cape Mendocino Coalinga-01 Parkfield - Gold Hill 2E 

Northridge-01 
Jensen Filter Plant 
Generator Morgan Hill Gilroy Array #3 

Chi-Chi, Taiwan TCU072 Northridge-01 LA - W 15th St 
N. Palm Springs Whitewater Trout Farm San Fernando LA - Hollywood Stor FF 

Northridge-01 
Canyon Country - W Lost 
Cany Sierra Madre San Marino - SW Academy 

Northridge-01 Pacoima Kagel Canyon Hector Mine Salton City 
Loma Prieta Capitola Northridge-01 San Bernardino - CSUSB Gr 
Duzce, Turkey Duzce N. Palm Springs Winchester Page Bros R 
Managua, Nicaragua-
01 Managua, ESSO Chi-Chi, Taiwan-05 KAU054 

Morgan Hill 
Anderson Dam 
(Downstream) Friuli, Italy-01 Conegliano 
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5.6 RESPONSE OF REPRESENTATIVE PILE GROUP 

To illustrate the performance of the OpenSees pile group model, the results of a series of 
analyses of a representative pile group are presented.  The response to monotonically increasing 
static loading was presented in Section 5.4.1.  Examples of the response to dynamic loading are 
presented in the following sections. 

5.6.1 Representative Pile Group 

The representative pile group is a 3x3 group in the sand profile.  The piles were spaced at 5 ft 
(i.e., 2.5D) center-to-center, and were connected to a 13 ft x 13 ft x 3.25 ft thick pile cap.  The 
top of the pile cap was assumed to be flush with the ground surface. 

5.6.2 Representative Loading Histories 

The dynamic response of a pile group is influenced by both the static and dynamic loading 
applied to the foundation.  For a given static load state, pile group displacements can be expected 
to increase with increasing dynamic loads.  Also, for a given level of dynamic loading, 
displacements (particularly permanent displacements) will increase with increasing static loads. 

5.6.2.1 Response to Harmonic Loading 

The general reasonableness of the OpenSees pile group model can be illustrated using simple 
harmonic loads applied to the pile group.  One should expect that application of a static vertical 
load will result in some vertical settlement of the pile cap, and that cyclic vertical loads 
superimposed on the static loads would cause additional displacement of an amount that depends 
on the cyclic load amplitude.  Figure 5.10 shows the response of the representative pile group to 
cyclic vertical loads of different amplitudes when applied after application of normalized static 
vertical loads of Qsn = 0.2 (upper row) and Qsn = 0.4 (lower row).  The amplitudes can be seen to 
increase with increasing cyclic load amplitude and to be higher for the case with Qsn = 0.4 than 
for the case with Qsn = 0.2. 
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Figure 5.10.   Response of pile groups subjected to harmonic vertical loading. 

Figure 5.11 illustrates the response of the representative pile group to lateral loading.  
Dynamic loads of different amplitude are superimposed upon normalized static loads of 0.33 and 
0.67.  The horizontal displacement amplitude can be seen to increase with increasing dynamic 
load amplitude and to be higher for the cases with Vsn = 0.67 than for Vsn = 0.33.  The results for 
the lateral load and overturning moment loading were analogous to those described for the 
vertical loading. 
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Figure 5.11.   Response of pile groups subjected to harmonic lateral loading. 

 

Figure 5.12.   Response of pile groups subjected to harmonic overturning moment. 
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The interaction of different loading components can also be illustrated using relatively 
simple harmonic loading.  Figure 5.13 shows the effects of rocking on the accumulation of 
vertical displacement.  Although they are plotted to different scales, the vertical settlement can 
be seen to increase with increasing cyclic rotation amplitude, and to be higher for the case with 
Qsn = 0.4 than for the case with Qsn = 0.2.  Such analyses show that rocking, in addition to cyclic 
vertical loading, has an important effect on the settlement of pile groups. 

 

 

Figure 5.13.   Settlement-rotation (w-θx) response of pile groups subjected to harmonic 
overturning moments under different levels of static, vertical loading. 

5.6.2.2 Response to Transient Loading 

In more realistic situations, transient loads are expected to be applied to pile foundations by 
earthquakes and other types dynamic loads. Figure 5.14 shows the response of a 3x3 pile group 
in sand with two different initial static load combinations. Static Load Case 1: Q/Qref = 0.2 and 
Vx/Vx ref = 0.0 and Static Load Case 2: Q/Qref = 0.2 and Vx/Vx ref = 0.33 to earthquake loading. The 
acceleration time history from the Parkfield earthquake was applied to both cases. 

The response (Figure 5.14) can be seen to be complicated, as the dynamic loads combine 
with the static loads to produce both cyclic and permanent displacements (vertical and 
horizontal) and rotations.  Static Load Case 2, in which 33% of the horizontal reference load was 
applied statically, accumulates significant horizontal displacement and rotation compared with 
Static Load Case 1, which had no static lateral load.  Vertical displacements accumulated for 
both cases, but the displacement for Static Load Case 1 are greater than those for Static Load 
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Case 2.  Figure 5.15 shows the relationships between the pile cap movements (vertical, 
horizontal, and rocking), which can be seen to increase together but in a complicated manner. 

 

 

Figure 5.14  Response of pile group to transient motions.  Static Load Case 1: Qns = 0.2 and Vns 
= 0.0 and Static Load Case 2: Qns = 0.2 and Vns = 0.33. 
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Figure 5.15  Response of pile group to transient motions.  Static Load Case 1: Qsn = 0.2 and Vsn 
= 0.0 and Static Load Case 2: Qsn = 0.2 and Vsn = 0.33 

5.7 AGGREGATE RESPONSE 

An extensive series of production analyses was performed.  These analyses considered different 
structural characteristics, different pile group configurations, sand and clay soil profiles, many 
different initial static load states, both linear and nonlinear column behavior (with multiple 
column yield moments), different pile capacities, and different pile cap stiffnesses.  For the great 
majority of the different combinations of conditions that were analyzed, all 50 ground motions 
were applied to the model; for several cases intended to explore a particular aspect of pile group 
behavior, a subset of 10 ground motions were applied in order to reduce processing time. 

The following sections present the results of the soil-foundation-structure interaction 
analyses.  The results are presented in terms of scatter plots, each point on which represents the 
peak absolute response for a particular input motion.  The peak values are taken individually and 
do not necessarily occur at the same time.  Representative plots are shown to illustrate basic 
trends in the response with respect to different variables or parameters.  The entire data set was 
used in the regression analyses performed to interpret the results of the tests; the regression 
analyses are described in Section 5.7. 

5.7.1 Normalization of Loading and Response 

The concept of normalized loads and response was introduced in Section 5.4.1.3.  Figure 5.16 
shows the benefits of describing pile group response using normalized variables.  Figure 5.16(a) 
illustrates the vertical displacements of 3x3, 5x5, and 7x7 pile groups supporting a linear 
structure with To = 0.5 sec in the sand profile in response to all 50 input motions.  Figure 5.16(b) 
shows the same results plotted in terms of normalized loads and displacements – the normalized 
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displacements fall into a much narrower band that is closely related to the normalized load, 
which suggests that normalized displacements of all three pile group sizes can be predicted as a 
function of normalized loads without a great loss of accuracy. 

  

Figure 5. 16.   Response of pile groups in sand profile with Qsn = 0.40, Vsn = 0.33, and Msn = 0.30 to 
earthquake loading: (a) peak vertical displacement vs. peak vertical load, and (b) 
normalized vertical displacement vs. normalized vertical load. 

Figure 5.16 illustrates the benefits of expressing both loading and response in terms of 
normalized variables.  Similar results were observed for horizontal displacement and rocking 
rotation; in these cases, normalization of displacement/rotation results in consistent relationships 
to normalized load/moment.  All results presented in the remainder of this chapter will be 
presented in terms of normalized loads and displacements.  Furthermore, the interpretation of 
results described in the subsequent section will also be expressed in terms of normalized loads 
and displacements. 

It should be recognized, however, that the uncertainty in displacement shown in figure 
5.16 is quite high even after normalization.  The displacement ordinates in Figure 5.16 cover six 
orders of magnitude. 

5.7.2 Effects of Structural Period 

Discussions with WSDOT and Caltrans engineers indicated that bridges with fundamental 
periods ranging from 0.5 – 1.0 sec would be of greatest interest for development of a 
performance-based design framework.  Soil-foundation-structure interaction analyses were 
performed for structures with fundamental periods of 0.5 sec and 1.0 sec.  Comparison of the 
results of analyses based on the two different structural periods showed that the period had 
relatively little effect on the normalized response.  Figure 5.17 shows the effects of structural 
period on the normalized response of a 5x5 pile group in the sand profile.  The data can be seen 
to virtually overlie each other, indicating that the normalized displacements and rotations are 
insensitive to structural period.  Figure 5.18 shows the same behavior for a 5x5 pile group in the 
clay profile  This trend was seen consistently in the data; in subsequent plots, the results from 
analyses based on To = 0.5 sec and To = 1.0 sec are combined.  In both Figures 5.17 and 5.18, the 
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responses to horizontal load and overturning moment show generally consistent response, but 
both show a significant number of data points with lower displacement/rotation than the majority 
of the data.  These cases correspond to initial load cases with zero static lateral force/moment; 
this behavior will be observed in many of the following plots as well. 

 
(a) 

 
 

(b) 

 

Figure 5.17   Illustration of the effects of 
structural period on normalized 
response of 5x5 pile group in sand 
profile: (a) vertical displacement vs. 
vertical load, (b) horizontal 
displacement vs. horizontal load, 
and (c) rotation vs. overturning 
moment. 

(c) 

 
 

(a) (b) 



100 

  

Figure 5.18   Illustration of the effects of 
structural period on normalized 
response of 5x5 pile group in clay 
profile: (a) vertical displacement vs. 
vertical load, (b) horizontal 
displacement vs. horizontal load, 
and (c) rotation vs. overturning 
moment. 

(c) 

 

5.7.3 Effects of Pile Group Size 

As indicated in Figure 5.16 for a particular initial, static load state, the size of a “square” pile 
group, i.e., one that has the same number of piles in both horizontal directions, affects load-
displacement response strongly in an absolute sense, but only weakly when normalized by the 
reference loads/moments and displacements/rotations.  The results in Figure 5.16 correspond to a 
particular initial, static load state.  When all static load states are considered, the normalized 
displacements are related to normalized loads as shown for 3x3, 5x5, and 7x7 pile groups in 
figures 5.19 (sand profile) and 5.20 (clay profile). 
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(a) 

 
 

(b) 

 

Figure 5.19   Illustration of the effects of pile 
group size on normalized 
response of square pile groups 
in sand profile: (a) vertical 
displacement vs. vertical load, 
(b) horizontal displacement vs. 
horizontal load, and (c) rotation 
vs. overturning moment. 

 
 

(c)
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(a) 

 
 

(b) 

 
 

Figure 5.20   Illustration of the effects of 
structural period on normalized 
response of square pile groups 
in clay profile: (a) vertical 
displacement vs. vertical load, 
(b) horizontal displacement vs. 
horizontal load, and (c) rotation 
vs. overturning moment. 

 

(c) 

 

Additional analyses were performed to investigate the behavior of rectangular pile 
groups.  In addition to the 3x3 groups already mentioned, both 3x5 and 3x7 pile groups were 
analyzed.  Figure 5.21 shows the computed response of 3x3, 3x5, and 3x7 pile groups with 
respect to all five components of loading and movement; the plots are organized so that the y-
direction is the long direction of the rectangular pile groups.  These plots show that the 
normalized vertical displacements are insensitive to pile group configuration – the data for the 
3x3, 5x5, and 7x7 pile groups lie virtually on top of each other.  The normalized lateral load 
response shows some sensitivity to pile group configuration with the normalized lateral 
displacement decreasing with increasing pile group aspect ratio.  The normalized lateral 
displacements are approximately equal for horizontal loading along the long and short axes  of 
the pile group.  The normalized rotation behavior, however, is significantly different in the two 
directions; greater normalized rotations are observed about the short axis of the pile group.  It 
should be noted, however, that the number of pile is also changing with aspect ratio in these 
plots. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

Figure 5.21   Normalized response of 3x3, 
3x5, and 3x7 pile groups in sand 
profile: (a) vertical displacement 
vs. vertical load, (b) horizontal 
displacement vs. horizontal load 
in long direction, (c) horizontal 
displacement vs. horizontal load 
in short direction, (d) rotation 
vs. overturning moment about 
short axis, and (e) rotation vs. 
overturning moment about long 
axis. 

(e) 

 

5.7.4 Effect of Yield Moment 

Bridge columns may be designed to yield plastically to limit the amplitudes of the loads applied 
to foundations supporting them.  Numerous analyses were performed with nonlinear column 
properties selected to allow development of limiting plastic moments in the structural column; 
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the effects of these limiting moments were to cap the overturning moment and lateral loads 
applied to the top of the pile cap.  Figure 5.22 shows time histories of all five LM components 
due to application of an input motion to the structural model with a limiting moment.  With the 
exception of a very brief numerical “overshoot,” the lateral force and overturning moment reach 
maximum values at several points during the time history.  Depending on the nature of the input 
motion, the moments and lateral forces may stay at their limiting values for a period of time 
before dropping down into the elastic range of behavior. 

 

 

Figure 5.22   Effects of yield moment on loads and moments applied to pile cap. 

Figure 5.23 shows the computed response of a 5x5 pile group supporting a To = 0.5 sec 
structure in the sand profile subjected to loading influenced by three different yield moment 
levels.  The figure shows that the load normalization procedure appears to allow consideration of 
the effects of column yielding within the same framework as that of non-yielding columns.  
Figure 5.24 shows that the same general behavior was observed for a 5x5 pile group in the clay 
profile. 
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(a) 

 

(b) 

 

Figure 5.23   Computed response of 5x5 pile 
group supporting To = 0.5 sec 
structure in sand profile for linear 
column and elasto-plastic 
column with three yield 
moments. 

 
 

(c) 
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(a) 

 

(b) 

 

Figure 5.24   Computed response of 5x5 pile 
group supporting To = 0.5 sec 
structure in clay profile for linear 
column and elasto-plastic 
column with three yield 
moments. 

(c) 

 

5.7.5 Effect of Pile Cap Passive Resistance 

A pile cap can provide a significant component of resistance to lateral loads under earthquake 
loading conditions.  To investigate the sensitivity of pile cap response to pile cap resistance, 
analyses were performed with the stiffness of the pile cap passive resistance springs doubled and 
halved.  Figures 5.24 and 5.25 show the computed response of pile caps with three levels of pile 
cap stiffness in sand and clay profiles, respectively.  The stiffness of the pile cap lateral spring 
has virtually no effect on the settlement behavior of the pile group, which is not unexpected.  The 
stiffness of the passive pile cap resistance also appears to have a relatively small effect on 
horizontal displacement and rotation, which may indicate that the pile cap stiffness represents a 
relatively small fraction of the total lateral resistance.  The effect could be larger for a pile group 
in which the cap attracts a larger fraction of the lateral load. 
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(a) 

 

(b) 

 

Figure 5.25   Computed response of 5x5 pile 
group in sand profile for three 
levels of pile cap passive spring 
stiffness. 

(c) 

 

5.7.6 Effect of Soil Shear Strength 

To determine the sensitivity of normalized displacement/rotations to variations in capacities that 
result from variations in soil properties, a series of analyses were performed with soil shear 
strength values divided by factors of 1.5 and 3.0.  The reduced shear strengths led to reduced pile 
capacities, hence also to reduced vertical reference loads and reference displacements.  Figures 
5.26 and 5.27 show the computed normalized displacements and rotations for different shear 
strengths in the sand and clay profiles, respectively.  The results indicate that the normalization 
process generally takes care of the effects of soil shear strength so that normalized response is 
not particularly sensitive to variations in shear strength. 
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(a) 

 

(b) 

 
 

Figure 5.26   Computed response of 5x5 pile 
group in sand profile for three 
friction angles. 

(c) 
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(a) 

 

(b) 

 
 

Figure 5.27   Computed response of 5x5 pile 
group in clay profile for three 
levels of undrained shear 
strength. 

(c) 

 

5.7.7 Discussion 

The OpenSees model of pile group response was shown in Chapter 4 to predict response 
consistent with that observed in full-scale static load tests, and to predict the response of pile 
groups subjected to dynamic loading in centrifuge model tests.  The model makes use of discrete 
elements, such as p-y, t-z, and Q-z elements, to represent three-dimensional soil-pile interaction 
and passive pile cap resistance.  These elements are not claimed to model response perfectly, but 
they do capture the primary effects of soil-pile interaction and treat them in a consistent manner. 

The normalization procedures described in this section are not perfect, but they are very 
useful.  For a given set of analysis conditions, the uncertainty in computed response is caused 
primarily by differences in the characteristics of the input motions, often referred to as record-to-
record variability, is quite high.  As a result, differences in the mean responses under various 
conditions may be so small relative to record-to-record variability that lumping the responses 
together through the normalization process is acceptable. 
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5.8 INTERPRETATION OF PILE GROUP RESPONSE 

As indicated in the preceding sections, thousands of OpenSees analyses were performed 
resulting in tens of thousands of data points.  The primary objective of the analyses was to 
develop relationships for predicting pile group displacements and rotations as functions of pile 
group loads and moments.   

5.8.1 Normalization 

To make the results of the dynamic pile group analyses as general and useful as possible, the 
concept of combining data from multiple analyses by normalizing both forces/moments and 
displacements/rotations was investigated.  As indicated in Section 5.6.1, normalization proved to 
be effective in bringing the median response levels to common, consistent values even when 
other variables (e.g., pile group size or shape) were changed.  Differences between median 
curves were so small compared to the scatter in response about the respective medians that 
separating the different cases for individual consideration provided no significant benefit. 

5.8.2 Regression Analyses 

A series of regression analyses were performed to develop models that would predict normalized 
displacements from normalized loads.  The displacements (including rotations) were expressed 
in terms of a five-component displacement ratio vector, DR = {u, v, w, θx, θy} and the loads in 
terms of a five-component load ratio vector, LR = {Q, Vx, Vy, Mx, My}.   

Anticipating that LRFD-like “checks” would likely be performed on individual load or 
displacement components (rather than checking the joint occurrence of all five components), 
individual component models were investigated.  These models were of the form 

 ( )ynxnynxnnwn MMVVQfw ,,,,=  
 ( )ynxnynxnnun MMVVQfu ,,,,=  
 ( )ynxnynxnnvn MMVVQfv ,,,,=  
 ( )ynxnynxnnxn MMVVQf

xn
,,,,θθ =  

 
( )ynxnynxnnyn MMVVQf

yn
,,,,θθ =

 
The models were developed in an incremental, methodical manner.  Each normalized 

displacement had an associated primary normalized load.  For example, the vertical load, Qn, is 
the primary LR component for the vertical displacement, wn.  Initially, each DR component was 
modeled as a sole function of its primary LR component.  An example, for the case of 
normalized lateral displacement, un, is shown in Figure 5.28.  The fitted curve can be seen to 
pass generally through the middle of the data as plotted, but the uncertainty, expressed in terms 
of the standard deviation of the (logarithmic) residuals, σε = σln DR|LR = 1.203, which is very high.  
The residuals were then plotted as functions of other potential predictor variables.  Figure 5.29 
shows the residuals plotted against the other four DR components.  Figure 5.29(a) shows a 
modest trend in residuals with vertical load, indicating that differences in vertical load level are 
responsible for some of the uncertainty in the initial model.  Figure 5.29(b) shows no trend in 
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residuals given the perpendicular horizontal load, Vy, and figures 5.29(c) and 5.29(d) show a 
strong trend in the residuals with both overturning moments, Mx and My.   

 

 

Figure 5.28   Initial model for prediction of normalized horizontal displacement, un, as a function 
of normalized horizontal load, Vxn. 
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(a)  (b)  

(c)  (d)  

Figure 5.29   Variation of residuals with secondary predictive variables for initial horizontal 
displacement, un, model: (a) vertical load, Qn, (b) perpendicular horizontal load, Vyn, (c) 
moment about perpendicular axis, Myn, and (d) moment about parallel axis, Mxn. 

The residuals plots indicated that overturning moments were the most influential of the 
secondary predictive variables, so Mx and My terms were added to the predictive equation and the 
residuals from the updated equation examined for remaining trends. Vertical load was still found 
to be influential and was then added to the model.  A number of different model formulations 
were investigated, including different ways (e.g., sums, products, etc.) of combining lateral load 
and moment components, with the objective of balancing predictive power with model 
simplicity.  In the end, a model of the form 

 )ln(796.0320.0990.0364.0191.0ln yxynxnnn MMVVQu ++−++=  

was obtained. The value of un from this equation is the median normalized horizontal 
displacement in the x-direction.  The standard deviation of the logarithmic residuals was σε = σln 

DR|LR = 0.749, a value that is high but much lower than that of the original model.  The residuals 
are shown in Figure 5.30.  The inclusion of additional variables, such as number of piles, and 
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other refinements such as separating static and dynamic components of loading, was not found to 
offer benefits in terms of reduction of uncertainty that were sufficient to justify the increased 
model complexity.  More highly nonlinear relationships were also investigated and found not to 
produce significantly improved predictions. 

 

(a)  (b)  

(c)  (d)  
 
 
 
 
 

Figure 5.30   Variation of residuals with 
secondary predictive variables for 
final horizontal displacement, un, 
model: (a) vertical load, Qn, (b) 
parallel horizontal load, Vxn, (c) 
perpendicular horizontal load, Vyn, 
(d) moment about perpendicular 
axis, Myn, and (e) moment about 
parallel axis, Mxn. 

(e)  
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This process was repeated systematically for all of the DR variables using the data from 
the sand and clay profiles.  Fundamental differences in the constitutive behavior of sands and 
clays produced sufficient differences in response that a unified model that applied to both was 
not feasible.  The final models, with their accompanying uncertainties, are listed in Table 5.8. 

 

Table 5.8  Final predictive models for normalized displacements/rotations. 

Soil  Equation  σε 

Sa
nd

 

)ln(203.0)ln(103.0ln648.1777.0ln ynxnynxnnn MMVVQw +++++=  0.434 

)ln(796.0320.0990.0ln364.0191.0ln ynxnynxnnn MMVVQu ++−++=  0.749 

)ln(796.0990.0320.0ln364.0191.0ln ynxnynxnnn MMVVQv +++−+=  0.749 

)ln(904.0ln127.1ln672.0401.0674.0ln ynxnynxnnxn MMVVnQ +++−+=θ  0.740 

)ln(904.0ln672.0ln127.1ln401.0674.0ln ynxnynxnnyn MMVVQ ++−++=θ  0.740 

C
la

y 

)ln(667.0)ln(197.0ln317.2386.0ln ynxnynxnnn MMVVQw +++++=  0.635 

)ln(947.0297.0826.0ln843.0329.0ln ynxnynxnnn MMVVQu ++−++=  0.976 

)ln(947.0826.0297.0ln843.0329.0ln ynxnynxnnn MMVVQv +++−+=  0.976 

)ln(084.1ln873.0ln501.0ln955.0113.1ln ynxnynxnnxn MMVVQ +++−+=θ  1.012 

)ln(084.1ln501.0ln873.0ln955.0113.1ln ynxnynxnnyn MMVVQ ++−++=θ  1.012 

5.8.3 Discussion 

The predictive models are based on the OpenSees analyses that were described earlier in the 
chapter.  Those analyses were performed on a simple, single-mass structural model subjected to 
three-dimensional input motions, and on a limited number of soil-foundation configurations.  
The model was intended to represent the first-order behavior of a bridge structure for the purpose 
of building and testing a performance-based framework for seismic LRFD.  The model was not 
intended to capture all elements of the seismic response of a particular bridge structure, and may 
exhibit behavior that is not representative of the behavior of an actual bridge.  It is expected that 
the framework would be used with the results of analyses of actual structures. 

Similarly, the pile groups analyzed in this project were limited to a relatively narrow 
range of geometries, materials, and soil conditions.  As a result, the predictive models described 
in the preceding section may be somewhat limited.  They are sufficient, however, for the purpose 
of developing and using the performance-based framework for seismic LRFD. 
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6 A Performance-Based Design Framework 

6.1 INTRODUCTION 

As indicated in Chapter 3, developing a design framework considering the virtually infinite 
number of combinations of bridge type, geometry, and material properties, the virtually infinite 
number of possible site and subsurface conditions, and the very large number of combinations of 
different pile types, lengths, and group configurations requires a procedure that can produce 
results general enough to be applicable to different combinations of these conditions. 

Chapter 3 described a performance-based framework for evaluating the response of a pile 
group subjected to dynamic loading.  Design, however, involves both demand and capacity and 
the development of a procedure that allows the probability that demand exceeds capacity to be 
quantified and kept below some user-specified level.  This chapter describes a performance-
based design framework that provides the basis for selection of load (demand) and resistance 
(capacity) factors consistent with a specific return period of limit state exceedance.  Two 
alternative procedures are developed – one based on forces and moments and the other based on 
displacements and rotations.  This framework required consideration of the intermediate load 
measure variable and of correlations between various loads and deformations. 

Seismic design involves an element of time that does not exist in most LRFD 
frameworks.  While the loading considered in static design (e.g., dead loads and live loads) exist 
for extended, if not indefinite, periods of time, earthquakes produce short and infrequent periods 
of intense loading.  As a result, performance levels in seismic design are more appropriately 
related to targeted rates of occurrence (or exceedance) of failure rather than targeted probabilities 
of failure.  Such rates can be expressed in terms of mean annual rates of exceedance, return 
periods, or (under a generally reasonable assumption) mean annual probabilities. 

A force-based design framework, in which uncertainties in loads and capacities are 
accounted for by load and resistance factors, is presented.  In this framework, the load and 
resistance factors are tied to user-specified mean annual rates of exceedance, or return periods. 

Because pile group performance is closely related to displacements, a displacement-based 
design procedure is also presented.  It provides factors by which median response and capacities 
can be multiplied to achieve a user-specified probability that the pile group displacement would 
not exceed a user-specified limit state displacement in a user-specified average period of time.  
The procedure considers uncertainties in earthquake ground motions, structural response, pile 
group response, and limit state displacements for all five components of pile cap displacement.  
This approach could potentially form the basis for the development of serviceability limit states 
for extreme events. 



116 

6.2 CAPACITY 

The capacity of a foundation can be thought of as a limiting level of response beyond which 
performance of the foundation is considered to be unsatisfactory in some way.  Therefore, the 
specification of capacity requires choice of a response metric, definition of acceptable 
performance, and identification of the response metric value that defines the onset of 
unacceptable performance.  Two basic forms of response metric, force-related and displacement-
related have been used in engineering practice.  The development of a framework that can handle 
both is described in the remainder of this chapter. 

6.2.1 Allowable Load as Capacity 

The design of pile foundations has historically been force-based, in that the forces imposed on 
the foundations have been compared with force-based pile capacities to infer performance.  The 
results of force-based analyses have usually been expressed in terms of factors of safety, with 
values greater than one implying successful performance and values less than one implying 
failure.  In this approach, design factors of safety are usually specified as being greater than one 
by a factor sufficient to account for uncertainty and consequences of failure.   

In many cases, pile foundations are designed using force-based LRFD procedures in 
which a single factor of safety is replaced by load and resistance factors that account separately 
for uncertainties in loading and capacity.  In a force-based design, the capacity is expressed in 
terms of resisting forces (for vertical and horizontal loads) and resisting moments (for 
overturning).  These capacities can be obtained by any of the methods described in Chapter 2. 

Because of spatial variability, measurement error, model uncertainty, and other factors, 
the capacity of a foundation is uncertain.  This uncertainty is accounted for in static LRFD 
design through the use of resistance factors whose values decrease as uncertainties in capacity 
increase and conservatism in the capacity estimate decreases.  Table 6.1 presents resistance 
factors for pile foundations – the values for the most reliable capacity estimation procedures, 
such as load tests, are relatively close to 1.0 while values for less reliable procedures are well 
below 1.0. 
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Table 6.1  Resistance factors for pile capacity by dynamic analysis and static load tests (after 
AASHTO, 2010) 

 

6.2.2 Allowable Displacement as Capacity 

The actual serviceability of pile foundations is much more closely related to displacements than 
to forces.  In this sense, the term “capacity” can also be expressed in terms of “allowable” 
deformation-related quantities such as settlement, lateral displacement, and rotation.  
Displacement capacities can be specified for various limit states that correspond to different 
levels of performance.  Displacement-based capacities are newer than force-based capacities, and 
procedures for estimating allowable displacements are not as advanced or well-developed as 
those for estimating force-based capacities.  As a result, displacement-based capacities are likely 
to be more uncertain than force-based capacities. 

6.3 LIMIT STATE CONCEPT 

Performance-based seismic design seeks to produce structures that will achieve user-specified 
levels of performance with a specified level of reliability.  Performance levels can be defined in 
many different ways.  Regardless of what metric is used to describe performance, that metric will 
have one or more levels that are considered to mark the boundary between acceptable and 
unacceptable performance.  These levels can be described as “limit states” that quantify the 
boundary between acceptable and unacceptable performance.  Limit states can be expressed in 
terms of force (e.g., as a pile resistance or deformations (e.g., as an acceptable settlement). 

In current practice, limit states are effectively defined as limiting response levels beyond 
which various levels of damage and loss are assumed to occur.  The response levels can be 
expressed in terms of force- or displacement-related quantities.  In conventional practice, design 
limit states usually represent conservative, but deterministic, estimates of limiting response.  The 
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level of conservatism in the allowable response value is generally not standardized or quantified, 
and likely varies from one designer to another. 

In reality, limit states should be recognized as being uncertain, and the level of 
uncertainty as depending on the procedure(s) used to define them.  Rather than characterizing 
allowable response conservatively and deterministically, it is desirable to characterize the 
distribution of allowable response as accurately and objectively as possible and to include its 
uncertainty in the performance evaluation. 

6.3.1 Calculation of Limit State Exceedance Rate 

An allowable level of response, whether expressed in terms of load or resistance, can be 
described as a limit state that marks the boundary between two levels of performance.  Limit 
states can be expressed explicitly in terms of consequences, which could be expressed in terms of 
physical damage (ranging, say, from concrete cracking to structural collapse) or expected losses 
(repair cost, downtime, or some other measure).  Seismic design, then, requires identification of 
appropriate limit states and acceptable rates (or annual probabilities) of their exceedance. 

6.3.1.1 Force-Based Limit State 

Force-based limit states for foundations are related to ultimate strength and moment resistance, 
which are compared with force and moment demands generally obtained through dynamic 
structural analyses.  The capacities themselves must be considered to be uncertain.  Letting C 
represent a random variable that describes a force-based capacity, the mean annual rate at which 
a scalar value of that capacity, C = c, representing a particular limit state would be exceeded by a 
given load measure, LM, is given by 

 [ ] [ ]∑
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|)( νλ

     (6.1)
 

where ν is the mean annual rate of earthquakes exceeding some minimum magnitude.  If C is 
uncertain, the mean annual rate of the capacity exceedance limit state, i.e., LS = LM > C, would 
be given by 

 ∫
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        (6.2) 

Thus, a hazard curve for force-based limit state exceedance, which considers the capacity and its 
uncertainty, can be evaluated from the IM hazard curve, the (probabilistic) relationship between 
IM and LM, and the uncertainty in capacity. 

6.3.1.2 Displacement-Based Limit State 

For foundations, displacement-based limit states consist of maximum acceptable displacements 
and rotations, which can be characterized as EDPs.  These quantities are often difficult to 
determine and must be assumed to be uncertain.  From Equation (3.8), the mean annual rate of 
exceeding a response level, EDP = edpk, can be expressed as 
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Letting C represent the maximum acceptable response (i.e., displacement) level for a given 
damage state, the mean annual rate at which a specific capacity, C=c, is exceeded can then be 
computed as 
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Accounting for the fact that the capacity is also uncertain, a hazard curve for the limit state, LS = 
EDP ≥ C, can be expressed as 
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Equation 6.5 can be integrated numerically to compute the mean annual rate (or return 
period) of limit state exceedance.  The computed rates depend on the IM hazard curve, the 
(probabilistic) relationship between IM and LM, the (probabilistic) relationship between LM and 
EDP, and the uncertainty in displacement capacity. 

6.3.2 Closed-Form Solution for Limit State Exceedance Rates 

Consideration of a closed-form solution, despite its restriction to the previously discussed 
assumptions regarding hazard curve, loading, and response relationships can provide useful 
insight into the development and behavior of load and resistance factors.  With the assumption of 
capacity lognormality, the previous closed-form response relationships can be extended to obtain 
closed-form limit state exceedance relationships.   

6.3.2.1 Force-Based Limit States 

A closed-form expression for the mean annual rate of LM exceedance was given in Equation 
3.34.  The rate at which some load capacity, C = c, would be exceeded is then 
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Using Equation 6.5 to account for uncertainty in load capacity 
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Extracting c from the first term and moving capacity-independent terms out of the integral, 
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The term inside the integral is, by definition, the mean value of c-k/b.  Since the expected value of 
a lognormal random variable, Y, with median, Ŷ , and dispersion, YY lnσβ = , raised to the power 
α is given by 
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Equation (6.8) becomes 
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which can be simplified to 
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The mean annual rate of load capacity exceedance can be seen to increase with increasing 
uncertainty in capacity as well as uncertainty in loading. 

6.3.2.2 Displacement-Based Capacity 

A similar approach can be taken to obtain a closed-form expression for displacement-based 
capacity exceedance rate.  This expression must account for uncertainty in LM, EDP, and 
capacity.  Following the closed form expression of Equation (3.13), the mean annual rate of 
exceeding some known capacity level, C = c, is given by 
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If the capacity is assumed to be lognormally distributed with median, µlnC, and 
logarithmic standard deviation, βC = σlnC, the mean annual rate of exceeding the capacity can be 
expressed as 
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Again, extracting c from the first term and moving capacity-independent terms out of the 
integral, Equation (6.13) can be written as 
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The term inside the integral is the expected value of bekc /− .  By the same logic used in the 
preceding section, Equation (6.14) becomes 
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which can be simplified to 
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The first part of Equation 6.16 represents the limit state exceedance rate without the 
effects of uncertainty, and the latter two parts (i.e., the exponential terms) represent the 
uncertainty in loading/response and capacity, respectively.  Thus, the mean annual rate of 
capacity exceedance is affected by uncertainty in the capacity as well as uncertainties in the 
loading and response models.   

6.4 LOAD AND RESISTANCE FACTOR FRAMEWORK 

The preceding section described procedures by which the mean annual rate of exceeding some 
limit state, interpreted as an exceedance of capacity, could be computed.  Such procedures allow 
for the element of time, in the form of rates of different levels of earthquake shaking, to be 
accounted for.  However, design for exceedance rate is not a familiar concept to geotechnical and 
foundation engineers, so some benefits can be obtained by casting performance-based seismic 
design in a more familiar format.  Jalayer and Cornell (2003) developed a demand-and-capacity-
factor-design format for structural design.    

Load and resistance factors are intended to account for uncertainties in loads and 
resistances, respectively.  For seismic design, loads are induced by ground motions so the total 
uncertainty in loading depends on the uncertainty in ground motion and the uncertainty in 
structural loading given the level of ground motion.  Capacities, and their uncertainties, are 
generally independent of loads. 

Uncertainty in design ground motion level is typically handled through probabilistic 
seismic hazard analyses, the results of which are usually expressed in terms of design response 
spectra.  Different procedures for development of design spectra are available, but they all 
produce spectra associated with some mean annual rate of exceedance, or return period.  If a 
design check is performed using ground motions developed from probabilistic seismic hazard 
analyses, the only uncertainty that need be represented by the load factor is the uncertainty in 
load given the intensity measure used to characterize ground motion at the design return period.  
This uncertainty will generally include a component of “record-to-record variability” that 
describes the variability of LM found in the predictions of analyses using input motions scaled to 
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the same IM, and model uncertainty.  Model uncertainty for force predictions is likely to be 
significantly lower than model uncertainty for displacement predictions. 

6.4.1 Calculation of Load and Resistance Factors 

If the uncertainty in LM|IM is zero, a deterministic LM hazard curve can be expressed in a 
relatively straightforward manner.  If the mean load measure can be related to the ground motion 
intensity by LM = f(IM), the zero-uncertainty mean load measure is 

 )(0 IMfLM =          (6.17) 

Letting imlm =f--1(lm), the zero-uncertainty LM hazard curve can therefore be expressed as 

 ( )lm
IMLM imlm ll =)(

0
         (6.18) 

which means that the value of LM at a particular return period is just the value of LM computed 
deterministically using the value of IM at the same return period.   

With consideration of uncertainty in load given ground motion level, the hazard curve for 
LM can be obtained from Equation 3.34.  For a given return period, the value of LM from this 
hazard curve can be expressed as LM1.  When uncertainty in LM|IM and capacity are both 
considered, as described in Equation 6.8, the LM at a particular return period can be expressed as 
LM2.  With this notation, load and resistance factors can be defined as 
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and 
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Graphically, the load and resistance factors would be interpreted as indicated in Figure 
6.1.  For a given return period, the value of LM0 is that which would be computed 
deterministically using the median IM value for the same return period.  The product of the load 
factor and that deterministic load is equal to the nominal load, LM1.  For the same return period, 
the load capacity including uncertainty in capacity is given by LM2.  The product of the load 
capacity and the resistance factor is the nominal resistance, which is also LM1.   
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Figure 6.1.   Schematic illustration of load measure hazard curves for cases of no uncertainty, 
uncertainty in load given ground motion intensity, and uncertainties in load given 
ground motion intensity and capacity. 

A seismic hazard curve can easily be combined with the Poisson model to estimate the 
probability of exceeding a particular IM level in a finite time interval. From the Poisson model, 
the probability of exceedance of IM = im in a time period, t, is  

 timIMeNP )(1]1[ λ−−=≥  (6.20) 

Expanding   in a Taylor series and eliminating high-order terms shows that  
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for small values of λt (or, equivalently, small values of t/TR), which are typical for seismic 
design.  This result is often used to approximate the annual (t = 1 yr) probability of exceedance 
as being equal to λIM.  Letting imp represent the IM value corresponding to a mean annual 
probability of exceedance, p (or TR = 1/p), a design that satisfies the condition 

 CRFLLF p
ˆˆ ⋅≤⋅  

where pL̂  is the load measure computed deterministically from IM = imp and Ĉ  is the median 
capacity would result in a mean annual probability of limit state exceedance of p. 



124 

6.4.2 Closed-Form Solution 

The development of a closed-form expression for the mean annual rate of capacity exceedance 
was described in Section 6.3.2.1.  The LRFD framework is intended to produce load and 
resistance factors that will be consistent with a user-specified mean annual rate of limit state 
exceedance (or return period or mean annual probability).  If the target mean annual probability 
is p, the design must satisfy pLS ≤λ .  Using Equation 6.11, and solving for Ĉ ,  
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In this expression, the term ( ) kkp /1
0/ −  is the IM value associated with the mean annual 

probability, p.  Representing that quantity as imp, the design must satisfy 
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In this expression, ( )b
pima  is the median LM value corresponding to pLS =λ , or pL̂ .  Grouping 

the loading terms on the left and the resistance terms on the right produces an equation that states 
that the factored load must be smaller than the factored resistance. 
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This equation can be written in a more common LRFD format as 

CRFLLF p
ˆˆ ⋅≤⋅          (6.25) 

where the load factor 
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is applied to the median load measure and the resistance factor, 
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is applied to the median capacity. 

6.4.3 Randomness and Uncertainty 

The LRFD framework is inherently probabilistic.  The need for probabilistic treatment in seismic 
design is evident from previous discussion of the accuracy with which ground motions, loads, 
response, and capacities can be predicted.  The term “uncertainty” is usually used in discussions 
of statistical parameters and probabilistic models, but it can be helpful to distinguish between 
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randomness and uncertainty when developing, implementing, and interpreting probabilistic 
design models. 

Randomness, which is frequently described by the term “aleatory uncertainty,” refers to 
the inherent or intrinsic variability of some quantity or phenomenon; as a result, it cannot be 
reduced by additional data or more thorough investigation.  Randomness can manifest itself, for 
example, in the variability of response produced by different ground motions, even when scaled 
to the same IM.  This record-to-record variability, which results from the apparently random, 
unpredictable nature of earthquakes, is a very significant component of the overall uncertainty in 
a typical PBEE investigation.  Uncertainty due to lack of data or knowledge concerning the 
quantity or phenomenon is frequently referred to as “epistemic uncertainty.”  Epistemic 
uncertainty differs from aleatory uncertainty in that it can be reduced by the acquisition of new 
information, e.g., by additional data, more extensive investigation, or by new research.   

The distinction between aleatory and epistemic uncertainties can be difficult, ambiguous, 
and confusing.  In practice, the distinction often depends as much on pragmatic as theoretical 
concerns.  While arguments can be made that all uncertainty is epistemic, practical 
considerations require that some be treated as aleatory; one could, for example, gain knowledge 
of the inherent variability of a natural soil deposit by drilling and sampling the entire site with 
boreholes on a six-inch spacing – an action so obviously impractical (and destructive) that it 
illustrates why such variability is treated as aleatory.  The assignment of aleatory vs. epistemic 
uncertainty can also be situation-dependent.  For example, uncertainty in the shear wave velocity 
of an existing earth dam would be characterized as epistemic if it is possible to measure it using 
various geophysical techniques; the shear wave velocity of a future earth dam, however, would 
be characterized as aleatory if the source of the fill material from which it is to be constructed is 
not known. 

The nature of the models used to predict performance will also affect the aleatory-
epistemic distinction.  All predictive models should be recognized as mathematical idealizations 
of reality – they are not perfect.  Model uncertainty, i.e., errors in model predictions, have two 
primary components: (a) the effect of missing predictive variables, and (b) the effects of 
inaccurate model form.  Missing variables may be those not recognized as being influential or 
those that cannot be measured or otherwise characterized.  Inaccurate model form may result 
from practical consideration of computational complexity/effort or lack of understanding of the 
basic physics of the problem.  Both components of model uncertainty can potentially be reduced, 
by including additional predictive variables and/or the use of improved mathematical 
expressions, but there will usually be a limit to the number of variables that can be identified 
and/or measured or to the understanding of the physics of the problem of interest that will limit 
the degree to which uncertainty can be reduced.  Therefore, model uncertainty will generally 
have both aleatory and epistemic components.  The fact that different models are frequently of 
different form and use different predictive variables means that they will predict different output 
values.  The variability of mean (or median) predictions from different plausible models, 
therefore, represents another component of epistemic uncertainty.  This situation is familiar in 
the context of PSHA where different attenuation relationships, for example, are used with their 
weighted contributions accounted for through a logic tree.  To properly account for epistemic 
uncertainty in response, damage, and loss predictions, multiple predictive models, where 
available, should also be used. 
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The need for distinguishing between aleatory and epistemic uncertainty depends on the 
manner in which the results of the PBEE analysis will be used.  The final result of the PEER 
PBEE framework is a mean annual rate of exceedance (or corresponding return period) of some 
loss level; the mean value is invariant with respect to the characterization of uncertainty as 
aleatory or epistemic.  As such, that characterization doesn’t matter in the end – the numerical 
value of the loss hazard will be the same regardless of whether some component of uncertainty is 
treated as aleatory or epistemic – what matters is properly capturing the total uncertainty.  It 
should be noted that the aleatory/epistemic distinction can become important if design or 
evaluation is to be based on some percentile (rather than mean) loss value.  In such cases, the 
value of interest can be sensitive to the manner in which uncertainty is divided into aleatory and 
epistemic components, and care must be taken to ensure that this division can be justified as fair 
and objective (i.e., not influenced by economic or competitive factors). 

Even when the mean hazard is used, however, it is still useful to consider which 
components of uncertainty can and cannot be reduced and the costs and benefits of doing so.  As 
will be illustrated shortly, increasing uncertainty tends to drive the ground motions, response, 
damage, and losses for a given return period higher in a performance-based evaluation.  The 
ability to show the benefits of increased investment, for example, in additional subsurface 
investigation or more sophisticated response modeling, represents a tremendous opportunity for 
geotechnical earthquake engineering practitioners. Randomness and uncertainty can be 
distinguished and accounted for separately in the closed-form solution.  Assuming random and 
uncertain components to be statistically independent, the total dispersions of load and resistance 
can be expressed as 

βββ 22
LULRL +=          (6.27a) 

and 

βββ 22
CUCRC +=          (6.27b) 

where the subscript ‘R’ refers to randomness and the subscript ‘U’ to uncertainty. 

6.5 RESPONSE AND CAPACITY FACTOR DESIGN FRAMEWORK 

In contrast to conventional load-based procedures, i.e. load-and-resistance-factor-design (LRFD), 
the format described in Section 6.4 can be expressed in terms of response (displacement) and 
capacity (allowable displacement) levels and will be referred to here as a demand-and-capacity-
factor design (DCFD) approach following the terminology of Jalayer and Cornell (2003).  
Expressions for response and capacity factors are developed in the following sections using an 
approach that accounts for the intermediate LM variable. 

Together, demand and capacity factors can play a role similar to that of the factor of 
safety so commonly used in geotechnical engineering practice over the past 50+ years.  They 
can, however, be calibrated in such a way that they allow mapping from the results of a 
deterministic response analysis to those of a performance-based response analysis.   
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In LRFD-based design, the load and resistance factors are intended to account for 
uncertainty in loads and resistances, respectively, and to allow design for a specific (and 
generally very low) probability that loads will exceed resistances.  In a displacement-based 
DCFD design, the demand factor would account for uncertainties in pile group loading by the 
supported structure, response (e.g., pile group displacement), and the capacity factor for 
uncertainties in pile group limit state (e.g., allowable displacement).  For seismic design 
purposes, the demand and capacity factors need to be tied to a particular limit state exceedance 
rate (or return period, or mean annual probability). 

6.5.1 Calculation of Demand and Capacity Factors 

The DCFD format can be developed in both a general form and an alternative form based on the 
closed-form solutions described in the preceding section.  Its development can be simplified by 
the introduction of certain notation and relationships.  Several are introduced in the following 
sections.  The general form follows the approach taken for the development of general load and 
resistance factors in Section 6.4.1. 

If the loading measure is taken as a deterministic (i.e., perfectly certain) function of 
ground motion intensity, LM = f(IM), and the response measure is taken as a deterministic 
function of loading, EDP = g(LM), then the response in the absence of uncertainty can be 
expressed as 

 ( ))(IMfgEDPo =  (6.28) 

With respect to the closed-form solution, the load and response model relationships of 
Equations (6.5) and (6.7) can be inverted to express the ground motion intensity measure 
associated with a given level of response, i.e., 
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Thus, edpim  is the IM value that produces a median EDP value of edp.  The variable, EDP0, 
therefore will be taken to represent the response level that exists in the absence of uncertainty in 
loads or response.  With no uncertainty in LM|IM or EDP|LM, the EDP exceedance probability, 

 [ ] ( )[ ] [ ]edpimIMPedpgfIMPedpEDPP >=>=> −− )(11
0  (6.30) 

which means that the mean annual rate of exceeding a particular level of response is equal to the 
mean annual rate of exceeding the intensity measure that produces that response in the absence 
of uncertainty.  The mean annual rate of exceedance of EDPo is then given by 
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Considering the uncertainty in displacement given the uncertainties in load and 
displacement conditional upon IM, the hazard curve for EDP can be computed using Equation 
6.31.  For a given return period, the value of EDP from this hazard curve will be referred to as 
EDP1.  A third hazard curve can be defined by adding the effects of uncertainty in displacement 
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capacity using Equation 6.5.  The EDP value from this curve at a particular return period will be 
referred to as EDP2.  With the goal of relating the response computed deterministically to that 
computed considering uncertainties in load, demand, and capacity, i.e., of relating EDPo to 
EDP2, demand and capacity factors can be defined as 
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A design based on the requirement that 
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where pD̂  is the value of EDP computed deterministically from IM = imp and Ĉ  is the median 
capacity, would correspond to an annual probability of limit state exceedance less than or equal 
to p.  The inequality can also be written as 
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If the ratio of median capacity to median response is viewed as being analogous to a factor of 
safety, the factor of safety would be given by EPD2/EDP0 for a given return period. 

6.5.2 Closed-Form Solution 

The objective of the RCFD development process is to identify resistance and capacity factors 
that, when used together, will ensure that the mean annual rate of limit state exceedance, LSλ  is 
lower than some desired value, p.  This objective would require satisfaction of the inequality, 
using Equation (6.16),  
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where, from Equation (6.16), the mean annual rate at which IM exceeds the value of IM that 
produces the median capacity, Ĉ , is 
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Substituting Equation (6.35) into Equation (6.36) gives 
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Solving Equation (6.37) for the median capacity allows determination of the median capacity 
that is consistent with an annual probability, p, of limit state exceedance. 
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Making use of Equation (6.32) 
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In this expression, the term ( )ebpimad )(  is the median EDP value for IM = imp, or pR̂ .  Making 
this substitution and rearranging, 
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Now, grouping the demand-related terms on the left and the capacity-related terms on the right, 
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which represents the final form of the DCFD format.  The left side can be interpreted as a 
factored demand and the right side as a factored capacity.  The factored demand is equal to the 
median demand resulting from a motion associated with a user-determined probability level 
multiplied by a factor that depends on the uncertainty in demand given the ground motion 
intensity; that factor is always greater than or equal to 1.0.  The factored capacity is equal to the 
median capacity multiplied by a factor that depends on the uncertainty in the capacity; that factor 
is always less than or equal to 1.0.  The factored demand is analogous to a factored load in a 
load-based LRFD format and the factored capacity is analogous to a factored resistance.  
Equation (6.41) can be rewritten in a form familiar to LRFD designers as 

 CCFRRF p
ˆˆ ⋅≤⋅  (6.42) 

where pR̂  is the median displacement demand given IM = imp, Ĉ  is the median capacity, the 
response factor is 
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and the capacity factor is 
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Note that this derivation assumes that the hazard curve can be expressed as a power 
function (i.e., that it is linear in log-log hazard space), that the response model can also be 
expressed as a power function, and that the response variable (EDP) is lognormally distributed.  
While these requirements are approximately satisfied for a number of seismic design situations, 
they are not generally satisfied over wide ranges of IM and EDP values.  However, they may 
represent an adequate approximation of actual behavior over ranges of IM and EDP that are 
significant from a practical design standpoint.  If that is the case, the design problem can be 
locally linearized to fit the IM and EDP behavior in the range of greatest interest and thereby be 
used to develop practical response and capacity factors. 

6.6 COMPUTATIONAL APPROACH 

The process of identifying appropriate demand and capacity factors involves the performance of 
a probabilistic seismic hazard analysis (PSHA), combining its results with those of probabilistic 
load and response analyses, followed by integration over capacity distributions in order to obtain 
the desired factors.  The process is complicated by the fact that the load measure, LM, and 
response measure, EDP, are both five-component vectors and that the components can be 
correlated to each other.  The calculations involved in these analyses are voluminous and can be 
quite time-consuming. 

A computer program, pgDF (pile group Design Factors), was written to perform the 
required analyses.  This Fortran program requires the user to provide basic input on ground 
motion hazards, structural loads, pile group characteristics, and allowable displacements.  The 
program then performs the calculations required to obtain the desired response and capacity 
factors.  The general operation of the program is illustrated in Figure 6.2 with details on each of 
the primary components described in the following sections. 
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Figure 6.2.   Schematic illustration of main components of pgDF. Descriptive section numbers 
in parentheses. 

6.6.1 Read Input Data 

The pgDF program was written to allow exploration of the effects of different inputs on demand 
and capacity factor values.  Toward that end, the user is required to provide certain input data.  
This allows the user to investigate the sensitivity of the demand and capacity factors to various 
conditions and assumptions.  The primary data supplied by the user include: 

1. Seismic hazard data – in order to develop capacity and demand factors that 
account for local seismicity, the user is allowed to enter a seismic hazard curve 
for the site of interest.  The intensity measure for the seismic hazard curve must 
be same intensity measure that the load measure is defined in terms of.  The 
intensity measures are entered with their corresponding return periods; up to 15 



132 

return periods may be specified.  For example, the pile group loads are generally 
expressed as functions of the fundamental period spectral acceleration, i.e., Sa(To).  
Therefore, the hazard curves must be expressed in terms of Sa(To).  For bridges, 
fundamental periods of 0.5 – 1.0 sec are common. 

 
2. Load data – the user provides static (i.e., pre-earthquake) loads and reference 

loads.  All five load components (vertical and two horizontal loads, and two 
overturning moments) must be provided and the user may specify correlation 
coefficients between all combinations of loads.  The reference loads used in the 
OpenSees analyses were defined as: 

 
 Vertical – load capacity obtained from Davisson (1973) procedure 
 Horizontal – load corresponding to pile load deflection of 0.1D. 
 Overturning – moment that produces vertical load equal to vertical load 

capacity in any pile under unidirectional moment loading. 
 

 To account for uncertainties in static, dynamic, and reference loads, a series of 
Monte Carlo simulations are performed. The user is asked to specify coarse and 
fine load measure grids.  Due to time and memory constraints, the time-
consuming Monte Carlo simulations are performed on a relatively coarse grid of 
dynamic load levels.  The Monte Carlo results are then interpolated to the fine LM 
grid over which subsequent performance-based integration calculations take 
place. 

 
3. Structural response data – the structural loads (i.e., vertical and two horizontal 

loads, and two overturning moments) are assumed to be related to the ground 
motion intensity measure used to define the ground motion hazard curve.  The 
program allows the user to enter an IM-LM relationship defined by median LM 
values corresponding to different IM values, and a corresponding dispersion, βL = 
σln LM|IM.  This relationship would typically be defined by structural response  
analyses.  The IM-LM data are entered as pairs of discrete points; the behavior 
between the entered points is interpolated linearly in log-log space.  This 
arrangement allows the load measures to vary nonlinearly with ground motion 
intensity.  For example, the effects of column hinging can be accounted for with a 
nonlinear IM-LM relationship. 

 
4. Displacement data – the program requires entry of the reference displacements, 

i.e., the displacements corresponding to the reference loads, and the displacement 
capacity (i.e., allowable displacement) for each of the five components of 
displacement.  Displacement capacities are assumed to be lognormally distributed 
and are therefore expressed in terms of a median value, Ĉ , and dispersion, βC = 
σln C, for each component of displacement. 
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6.6.2 Compute IM Hazard Curves 

The ground motion hazard data is generally provided by the user at a small integer number of 
return periods; the USGS National Seismic hazard Mapping website, for example provides 
ground motion hazard data at six return periods – 108, 224, 475, 975, 2,475, and 4,975 years.  
While return periods beyond the boundaries of this data are rarely used for design of civil 
structures, motions with lower or higher hazard levels may still provide some contribution to pile 
response in a performance-based framework.  Therefore, extrapolation to return periods less than 
108 years and greater than 4,975 years is required.  This extrapolation was performed using the 
logic developed by Mayfield (2007).  At the high hazard (low return period) level, the hazard 
curve was extrapolated linearly in rTIM loglog −  space to pass through a point where TR = 
0.000001 yr was assigned to IM = 0.000001.  At the low hazard (long return period) level, a 
quadratic equation was fit to the ground motion hazard data at return periods of 975, 2,475, and 
4,975 years in log-log space and used to extrapolate to longer return periods.  A maximum return 
period of 1,000,000 years was used when integrating ground motion hazards. 

6.6.3 Compute LM Hazard Curves 

Load measure hazard curves are computed for vertical load, Q, horizontal loads, Vx and Vy, and 
overturning moments, Mx and My, using the IM hazard curve and probabilistic IM-LM 
relationships provided by the user.  The LM hazard behavior is computed using the numerical 
integration process described in Equation 6.3(a).  Two LM hazard curves are computed – a curve 
that neglects all uncertainty and represents the median load measure, LM0, for a given return 
period, and a curve that includes the effects of uncertainty in static load, reference load and load 
measure given ground motion, which is encapsulated in the load measure, LM1, 

6.6.4 Compute LM Limit State Hazard Curves 

The LM hazard curves are then integrated over the load capacity distributions, as indicated in 
Equation 6.1, to develop force-based limit state hazard curves.  These calculations are performed 
for all five load measure components; for each, the hazard curve that includes capacity and its 
uncertainty, as represented by the load measure, LM2, is obtained. 

6.6.5 Perform Monte Carlo Simulation of LM-EDP Response 

The response of the pile group to the applied dynamic loads, with consideration of all 
uncertainties, is estimated using Monte Carlo simulation based on the results of the pile group-
soil-structure interaction analyses described in Chapter 5.  In order to provide a complete 
indication of pile group response, all combinations of LM components are evaluated on a coarse 
grid of LM values.  With five LM components, the number of LM combinations is 5n where n is 
the number of LM increments.  Load and displacement ratios for all components need to be 
stored in pgDF, which leads to 6-dimensional load and displacement arrays with 5n5 elements 
(e.g., 38,800 elements for n = 6).  To avoid exceeding RAM memory limits, the Monte Carlo 
simulations are performed on a relatively coarse grid with subsequent interpolation for the finer 
grid that is required for accurate numerical integration in the probability calculations.  The main 
steps in the Monte Carlo simulation procedure are: 
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1. Definition of static loads – static load data consisting of median values and logarithmic 
standard deviations are provided by the user.  These values are used to compute five 
randomized LM vectors. 

 
2. Establishment of a coarse LM array – the user-specified LM values are used to develop a 

5-dimensional array that consists of all possible combinations of coarse-grid LM values. 
 

3. Looping through all possible combinations of LM values – for each combination, the 
following steps are performed: 

 
a. Randomized static, reference, and dynamic loads are computed.  User-specified load 

component correlations are achieved using the eigenvalue/eigenvector approach 
described by Haldar and Mahadevan (2000). 

b. Resulting randomized load ratio (normalized LM) values are computed.  The load 
ratios include the effects of uncertainties in static loads, reference loads, and 
dynamic loads. 

c. Displacement ratios are computed for all combinations of randomized load ratio 
values.  The displacement ratios are computed from the regression relationships 
described in Chapter 5, and account for the correlated uncertainties in all 
components of the LM vector. 

d. Displacement ratio values are statistically characterized.  Median and logarithmic 
standard deviation values are computed from the simulated displacement ratio 
distributions. 

This process results in median and logarithmic standard deviation values for all 
combinations of load measures on the coarse LM grid.   

6.6.6 Perform Multiple Linear Regression Analyses on Coarse Grid EDP Data 

The displacement ratio values computed in the previous step correspond to the coarse LM grid.  
Since subsequent performance-based calculations will require integration over all of the LM 
values, achieving adequate accuracy will require probabilistic characterization (i.e., availability 
of median and logarithmic standard deviation data) on a finer LM grid.  The median normalized 
displacement value can be thought of as consisting of a component predicted by the normalized 
LM-EDP regression relationships and a component that results from the uncertainty in that 
relationship and its various input variables.  The first component of median normalized 
displacement can be computed directly from the available regression equations.  The second 
component does not fluctuate significantly over the range of load ratios, and is therefore 
evaluated as a continuous function of the various LR components using multiple linear regression 
analyses.  The logarithmic standard deviation values are also relatively stable and are therefore 
represented as a continuous function of the LR components using multiple linear regression.   

With the multiple linear regression analyses, the pgDF program can compute all 
components of displacement ratio for any combination of fine-grid normalized load components.  
This procedure removes the need for five-dimensional interpolation between the coarse grid DR 
values. 
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6.6.7 Compute EDP Hazard Curves 

Displacement hazard curves are obtained from the LM hazard curves and the Monte Carlo 
simulation-based normalized LM-EDP relationships.  The curves are obtained by numerical 
integrations of the form shown in Equation 6.3(b) over a fine grid of LM values.  The median LM 
values on the fine grid were taken as the sum of the median value from the LR-DR regression 
relationship and the multiple linear regression-based median increment function described in 
Section 6.6.5.  The logarithmic standard deviation values were obtained from the multiple linear 
regression-based fit to the coarse grid dispersion data.  The normalized displacement ratios were 
transformed to EDP values (vertical displacement, two horizontal displacements, and two 
rocking rotations) using the reference displacement values. 

The integrations required to determine the EDP values are performed over five 
dimensions (each of the load measure components) for each EDP.  The approach used to perform 
this integration required modification of the basic PEER PBEE integral.  Consider the PEER 
integral for a scalar value, X, related to another scalar, Y = g(X).  In its conventional form, the 
PEER PBEE integral would be written as 

 ∫
∞
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This integral can easily be rewritten as 

 ∫
∞

=>=
0

)(]|[)( dx
dx

xdxXyYPy X
Y

λλ  (6.45) 

Integrating Equation (6.47) by parts ( ∫ ∫−= duvuvudv ) gives 

 ∫
∞

∞
=>−=>=

0
0

]|[)()(]|[)( xXyYdPxxxXyYPy XXY λλλ  (6.46) 

For the first term in Equation (6.46), 0]|[ ==> xXyYP  when x = 0 and 0)( =xd Xλ  when x 
= ∞ , which means that the term outside the integral is zero.  Therefore, 
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which can also be written as 
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The multi-dimensional equivalent would be 

 ∫∫ ∫
∞∞ ∞

===>=
0

2211
0 0

],,|[)()( nnXY xXxXxXyYdPxy 2 λλ
 (6.49) 

where the incremental probability can be computed as 
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The integrations and partial differentiation need to be performed numerically.  Writing it all out 
for the five-dimensional case (in which X represents LM and Y represents EDP), 
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where 
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This form allows convenient implementation of the assumption that 
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These calculations are performed both with and without uncertainty to obtain hazard curves for 
the zero-uncertainty response measures, EDP0, and the response measure, EDP1, that includes 
the effects of uncertainty. 

6.6.8 Compute EDP Limit State Hazard Curves 

The EDP hazard curves are then integrated over the displacement capacity distributions, as 
indicated in Equation 6.4, to develop displacement-based limit state hazard curves.  These 
calculations are performed for all five response measure components; for each, the hazard curve 
that includes capacity and its uncertainty, as represented by the load measure, EDP2, is obtained. 



137 

6.6.9 Compute Load and Resistance Factors 

With all three LM hazard curves computed, load and resistance factors are computed using 
Equations 6.19. This process requires interpolation to find LM values at consistent return 
periods; the interpolations are performed linearly in log-log space. 

6.6.9.1 Compute Demand and Capacity Factors 

With all three EDP hazard curves computed, load and resistance factors are computed using 
Equations 6.21.  This process requires interpolation to find EDP values at consistent return 
periods; the interpolations are performed linearly in log-log space. 

6.7 VALIDATION OF DCFD ANALYSES 

Validation of the computational model was difficult and time-consuming , largely because of the 
complexity of the five-dimensional nature of the LM and EDP vectors, the multiple uncertain 
and nonlinear relationships that affect its results, and the lack of any specific solution against 
which to verify the accuracy of the full model.  As indicated previously and derived in Chapter 3 
and earlier in this chapter, a closed-form solution can be developed for specific assumptions 
about the loading and response behavior – however, this solution is only available for scalar 
relationships, i.e., a single LM and a single EDP.  The assumptions required for the closed-form 
solutions (i.e., power law hazard and response curves with lognormal uncertainties) are 
somewhat restrictive with respect to the actual conditions involved in bridge and pile foundation 
evaluation and design, but still can play an important role in showing that the basic form of the 
computational model is correct under those conditions. 

The philosophy of the validation process was to first show that the computational model 
could predict the results obtained by the closed-form solution for a variety of conditions.  
Following validation of the basic computational approach by comparison with closed-form 
solutions for conditions under which the closed-form solutions are applicable, deviations from 
the closed-form assumptions were instituted with the results examined for logic and 
reasonableness.  Parametric analyses illustrating the behavior and sensitivities of the model to 
various factors were performed. 

6.7.1 Comparison with Closed-Form Solutions 

The closed-form solution assumes power law relationships between IM and LM and between LM 
and EDP, and assumes lognormal dispersion of the IM-LM and LM-EDP relationships.  The 
power law functions can describe linear and various degrees of nonlinear behavior, and the 
dispersion relationships can be used to model different degrees of uncertainty.  Analyses were 
performed using multiple perturbations of a basic structure-foundation model with the results 
compared with the closed-form solution results.  In these analyses, the full five-dimensional 
integration was performed but the five loads and displacements were assumed to develop 
independently – for example, the vertical displacement was assumed to be affected only by the 
vertical load with no contribution from lateral loads or overturning moments 
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An extensive series of analyses, a portion of which are described in this section of the 
report, were performed to confirm that the program accurately reproduced the results given by 
the closed-form solution.  These analyses considered a variety of relationships between IM, LM, 
and EDP, ranging from linear to nonlinear, and a variety of different levels of uncertainty in 
those relationships.  The initial analyses considered deterministic systems, after which the effects 
of uncertainty were evaluated. 

6.7.1.1 Base Case System 

The closed-form solutions were developed for a simple, base-case system in which the seismic 
hazard curve for 0.5-sec spectral acceleration was defined as 

 ( ) 626.2
)5.0( )5.0(00117.0 −= aS S

a
λ        (6.54) 

where Sa(0.5) is expressed as a fraction of gravity.  The IM-LM relationships were initially set at 

 SLM a
9.08487=          (6.55) 

for all of the load measures.  This relationship indicates that loads are a mildly nonlinear function 
of spectral acceleration.  Finally, the LM-EDP relationships were assumed to be independent and 
given by 

 LMEDP +−= 5.0ln          (6.56) 

or 

 
0.1000016702.0 LMEDP =         (6.57) 

The various relationships between IMs, LMs, and EDPs are shown in Figure 6.3.  The 
seismic hazard curve of Figure 6.3(a) is similar to the USGS hazard curve for San Francisco, 
California. The IM-LM relationship is representative of a linear or slightly nonlinear single-mass 
system similar to that described in Section 5.2.1, and the LM-EDP relationship is an arbitrary 
linear relationship.  Note that the base case system has little nonlinearity; the actual values of the 
parameters describing the IM-LM-EDP relationships are not important for the purpose of 
showing that the computer model can reproduce the closed-form results under the conditions 
required for applicability of the closed-form solution. 

6.7.1.2 Results of Closed-Form Comparative Analyses 

The results of the comparative analyses will be expressed in terms of computed response hazard 
curves, since they are the basic elements of the LRFD calculations.  Calculation of load and 
resistance factors, and of demand and capacity factors, is a straightforward extension of the 
hazard curve calculation – the hazard curve calculation is the demanding part of the process and 
the one in which calculation errors or inconsistencies are most readily seen.  Hence, numerically 
computed hazard curve values that match values from the closed-form solution are taken as 
evidence of the adequacy of the calculations for the considered conditions. 



139 

Because the performance-based load and response calculations involve Monte Carlo 
simulation of pile group response and repeated numerical integration over multiple loading and 
response dimensions, significant trade-offs between computational effort and accuracy exist.  
The use of small integration increments, particularly the increments of load over which the 
response parameters are integrated, will lead to more accurate solutions.  They will also, 
however, lead to more time-consuming calculations.  Halving the integration increments will, for 
example, increase computation time by a factor of approximately 25 = 16.  With the calculations 
for a relatively coarse integration grid taking 2-3 hours on a computer of moderate capabilities, 
such potential increases can be very costly. 

6.7.1.3 Purely Deterministic Analysis 

The first test was performed deterministically, i.e., with the assumption of no uncertainty in any 
of the variables.  Dispersion values (i.e., logarithmic standard deviations) were all set to values 
of 0.001.  This condition is actually one of the most difficult to model numerically because the 
probability of exceeding a particular variable value changes instantaneously from 0 to 1 when the 
median value of the variable is exceeded – more formally, the cumulative distribution function 
for the variable is a step function.  The extent to which a perfect step function can be modeled 
numerically depends on the size of the integration increment; the numerical approximation takes 
the form of a “ramp” function that approximates the step function more accurately as the number 
of integration increments increases, but can only be exact in the limit as the number of 
integration increments becomes infinite.   

The results of the closed-form analyses will be presented in terms of vertical 
displacements which, in the scalar manner required by the closed-form solution, result purely 
from vertical loads.  Figure 6.3 shows the results of Test 1, in which the closed form solution is 
shown with a smooth solid curve and the numerically predicted values as discrete points at 
different vertical displacement levels.  The computed values can be seen to generally coincide 
well with the closed-form solution, although the points at very low settlement values (and very 
short return periods) do not match well, and the numerical results appear to fluctuate a bit with 
respect to the closed-form solution at higher settlement values.  The underprediction of response 
(settlement) at low response levels is related to the size of the response increment selected.  In 
this case, the response increment was 0.05 m (about 2 inches).  It should be noted that the 
numerically-modeled points for the deterministic case, the case of load model uncertainty, and 
the case of load and resistance model uncertainty (i.e., the curves representing LM0, LM1, and 
LM2 in Equation 6.21) all plot on top of each other, as they should for the assumed conditions. 

 



140 

 

Figure 6.3   Comparison of closed-form and numerical solutions for deterministic base case 
vertical settlement problem and relatively coarse settlement increment. 

The use of a smaller response increment would produce better agreement between the 
numerical and closed-form results at low response levels, but would increase the total number of 
increments for which calculations would need to be performed, thereby increasing the execution 
time.  For this particular case, the agreement becomes poor at mean annual rates of exceedance 
greater than about 0.01 yr-1, or return periods shorter than about 100 yrs.  Since seismic design is 
based on return periods much longer than 100 yrs, some degree of inaccuracy at these short 
return periods is not considered problematic.  It should be noted that the numerical values are 
consistent with the closed-form values to return periods of about 50,000 yrs, which is much 
greater than design-level return periods. 

6.7.1.4 Variation of IM Hazard Curve 

To confirm that the numerical analysis could properly account for variations in the position and 
slope of the seismic hazard curve, deterministic analyses were performed for several different 
spectral acceleration hazard curves.  Figure 6.4 shows the results of closed-form and numerical 
analyses for the base case hazard curve and for another hazard curve (Test 2) given by  

 
( ) 5.1

)5.0( )5.0(0011.0 −= aS S
a

λ
        (6.58) 

The mean annual rates of settlement exceedance based on the second Sa hazard curve also 
agree well with those given by the closed-form solution.  For this deterministic analysis, the 
numerical points for all three curves fell on top of each other.  Again, some deviation was 
observed at low settlement levels for the settlement increment used in these analyses.  These 
results indicate that the numerical model can properly account for differences in seismicity. 
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Figure 6.4   Comparison of closed-form and numerical solutions for deterministic base case 
problem with different IM hazard curves. 

6.7.1.5 Variation of Load Model 

The ability of the numerical model to account for differences caused by different load models 
was evaluated in a series of analyses.  While the base case analysis assumed that vertical load 
was directly proportional to spectral acceleration, additional analyses were performed with 
different IM-LM relationships.  Figure 6.5 presents the results of the base case analysis along 
with another analysis identical to the base case analysis except for the load model, which was 
assumed to be strongly nonlinear, 

 ( ) 5.0)5.0(4000 aSQ =          (6.59) 

The numerical results can be seen to track the closed-form solution well over a range of 
return periods that span far beyond the range of return periods used for design.  The return 
periods at which the numerical values deviate significantly from the closed-form values are well 
above or below the range considered for design.  These results indicate that the computational 
model can properly account for differences in structural response, as reflected in a load model. 

 

Figure 6.5   Comparison of closed-form and numerical solutions for deterministic base case 
problem with different IM-LM relationships. 
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6.7.1.6 Variation of Response Model 

The response of a pile group to the loading applied to it is of critical importance for foundation 
design.  To isolate the effects of the response model, analyses were performed for the base case 
condition modified only by alternate LM-EDP relationships.  Figure 6.6 presents the results of 
analyses for the base case and another system for which settlement was a nonlinear function of 
vertical load, 

 
8.00001.0 Qw =          (6.60) 

Again, the numerical model was able to predict mean annual rates of exceedance that 
matched the closed-form solution well.  Deviations between the two approaches occurred outside 
the range of interest for design. 

 

 

Figure 6.6   Comparison of closed-form and numerical solutions for deterministic base case 
problem with different LM-EDP relationships. 

6.7.1.7 Inclusion of Load Model Uncertainty 

The preceding sections have shown that the computational model is capable of representing 
different modeling relationships under deterministic conditions.  Without uncertainties in loads, 
displacements, or capacities, all design factors (load, resistance, demand, and capacity) have 
values of 1.0.  One primary purpose of the performance-based framework, however, is to account 
for uncertainties in the development of design factors.  The closed-form framework allows 
consideration of uncertainties in load and response, which were isolated in a series of analyses.  
When uncertainty in the load model, i.e., in the load given the ground motion intensity, is 
included, the load factor should be expected to increase to a value above 1.0 and the resistance 
factor to remain at 1.0.  Figure 6.7 shows the results of analyses in which the dispersion in 
vertical load, 

aSQQ |lnσβ = , was set at a value of 0.3.  Careful examination shows that, at a given 
hazard level, Q1 = Q2 > Q0 and w1 = w2 > w0, as should be expected.  The computed load and 
resistance factors agree very well with those given by the closed-form solution. 
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Figure 6.7   Comparison of closed-form and numerical load and response curves and load, 
resistance, demand, and capacity factors including the effects of load model 
uncertainty.  Load and demand factors are greater than resistance and capacity 
factors in each plot. 

6.7.1.8 Inclusion of Response Model Uncertainty 

Uncertainty also exists in the prediction of pile group response, i.e., displacement given applied 
loading.  To isolate the effects of uncertainty in response, analyses were performed in which the 

dispersion in vertical settlement, aQww |lnσβ = , was set at a value of 0.5.  The results of this 
analysis are shown in Figure 6.8.  Careful examination shows that, at a given hazard level, Q1 = 
Q2 = Q0 (since zero uncertainty in loading was assumed) and w1 = w2 > w0, as should be 
expected.  The computed load and resistance factors agree very well with those given by the 
closed-form solution. 
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Figure 6.8   Comparison of closed-form and numerical load and response curves and load, 
resistance, demand, and capacity factors including the effects of response model 
uncertainty.  Load and demand factors are greater than resistance and capacity 
factors in each plot. 

6.7.1.9 Inclusion of Load and Response Model Uncertainty 

When uncertainties in load and response exist, the computational model must be able to properly 
account for both even though their effects are computed in different manners.  An analysis was 
performed with the load and response uncertainties of the preceding two cases both applied 

simultaneously, i.e., aSQQ |lnσβ = = 0.3 and aQww |lnσβ =  = 0.5.  Uncertainties in capacities were 
still assumed to be zero.  Figure 6.9 shows the results of analyses with both components of 
uncertainty.  Again, the load and demand factors are greater than 1.0, as they should be when 
uncertainties in load and displacement demand are considered.  The resistance and capacity 
factors remain at 1.0 due to the deterministic treatment of force and displacement capacities. 
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Figure 6.9   Comparison of closed-form and numerical load and response curves and load, 
resistance, demand, and capacity factors including the effects of both load and 
response model uncertainty.  Load and demand factors are greater than resistance 
and capacity factors in each plot. 

6.7.1.10 Inclusion of Load Model, Response Model, and Capacity Uncertainty 

Adding uncertainties in force and displacement capacities can be expected to cause resistance 
and capacity factors to drop below 1.0.  A series of analyses were performed with uncertainties 
in force capacity alone, displacement capacity alone, and force and displacement capacity 
together.  The results of these analyses, shown in Figures 6.10 through 6.12, show that the 
computational model is able to reproduce the closed-form solution for each of these specific 
cases. 
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Figure 6.10   Comparison of closed-form and numerical load and response curves and load, 
resistance, demand, and capacity factors including the effects of force capacity 
uncertainty.  Load and demand factors are greater than resistance and capacity 
factors in each plot.  Legends in upper figures also apply to lower figures. 

 

 



147 

 

Figure 6.11   Comparison of closed-form and numerical load and response curves and load, 
resistance, demand, and capacity factors including the effects of response 
capacity uncertainty.  Load and demand factors are greater than resistance and 
capacity factors in each plot.  Legends in upper figures also apply to lower figures. 
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Figure 6.12   Comparison of closed-form and numerical load and response curves and load, 
resistance, demand, and capacity factors including the effects of both force and 
response capacity uncertainty.  Load and demand factors are greater than 
resistance and capacity factors in each plot.  Legends in upper figures also apply 
to lower figures. 

6.7.1.11 Discussion 

The preceding results illustrate the ability of the computational model to accurately replicate 
closed-form results for the conditions under which the closed-form solution are applicable.  
Those conditions are generally consistent with potential seismicity, structural response, and 
foundation response, but the relationships they are based on are simpler than the relationships 
that best represent actual behavior.  Furthermore, the closed-form solutions are applicable only to 
scalar (i.e., single variable) loading and response relationships.  The computational model was 
checked for each of the five pairs of loading and response variables, Q-w, Vx-u, Vy-v, Mx-θy, My-
θx, and each individual relationship was found to behave in the manner illustrated by vertical 
load and settlement in the preceding paragraphs. 

As discussed earlier in this chapter, the LRFD and DCFD frameworks compute load, 
resistance, demand, and capacity factors based on ratios of LM and EDP values at equal mean 
annual rates of exceedance (or return periods).  The numerical integration process can be seen in 
the previous figures to provide close approximations to the closed-form solution, but the 
approximate nature of the numerical integration prevents them from being exact.  As a result, the 
individual load and response hazard curve data points do not necessarily provide a smooth fit to 
the smooth closed-form curves.  The effects of these relatively small fluctuations about the 
smooth curve, however, lead to a more pronounced lack of smoothness in their ratios, hence in 
the design factors.  As a result, the load, resistance, demand, and capacity factors should be 
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interpreted in terms of gradual trends rather than the rapid fluctuations that may appear in some 
of the subsequently presented numerically-computed results. 

6.7.2 Incremental Testing of Multiple Components 

With the ability of the program to match the results of closed-form solutions for individual 
components demonstrated, the problem dealing with multiple components must be addressed.  
The OpenSees analyses described in Chapter 5 clearly showed that various components of pile 
group displacement were influenced, to varying degrees, by multiple components of loading.  
These dependencies were accounted for, at least in an average sense, in the regression 
relationships shown in Table 5.7.  The simulations and integrations required for the vector 
problem should be recognized as being much more complicated than those required for 
comparison with the closed-form solutions; many more variables and relationships are required.  
These relationships are generally nonlinear with a complexity greater than that assumed for the 
closed-form solution.  With the final results influenced by so many intermediate relationships 
and variables, the checking of numerical results becomes extremely difficult – the analysis has so 
many “moving parts” that isolation of the cause of a particular aspect of behavior becomes 
extremely difficult. 

In order to develop confidence that the full model is producing reasonable results, many 
analyses were performed and studied.  An example of one series of analyses is presented in the 
following paragraphs.  The purpose of the series of analyses was to incrementally invoke the 
various capabilities of the model with examination of the reasonableness of the results after each 
increment.  The results of the analyses reported here are presented in terms of vertical loads and 
settlements; these results are representative of those observed for the other loading and response 
variables. 

The initial analysis was performed with no uncertainty in any of the variables or 
relationships, and with the settlement assumed to be a factor of vertical load alone – the 
coefficients associated with Vx, Vy, Mx, and My in the sand profile load-settlement relationship in 
Table 5.7 were all set to zero.  For these conditions, all three vertical load hazard curves and all 
three settlement hazard curves are expected to be coincident, and all load, resistance, demand, 
and capacity factors are expected to be 1.0.  Figure 6.13 presents the results of this analysis, and 
shows that the anticipated results were achieved.  With the settlement depending only on the 
vertical load, and with no uncertainty considered, the settlement hazard is quite low – the 1,000-
yr settlement, for example, is about 1 cm. 
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Fig 6.13.   Results of single load component (i.e., w = f(Q)) analysis with no uncertainty.  All 
three vertical load and settlement hazard curves are plotted, but are coincident. 

The next two sets of analyses showed the effects of adding the other load components to 
the settlement calculation while still holding all uncertainty values at zero.  Settlements are 
expected to increase with increasing lateral load and overturning moment amplitudes.  Figure 
6.14 shows the results of the analyses in which the effects of vertical and lateral loads were 
considered, and Figure 6.15 shows the results of analyses in which vertical loads, lateral loads, 
and overturning moments were all considered.  For these sets of analyses, the settlements should 
be expected to increase as the different load components are added.  Because uncertainty was set 
to zero, the load and settlement hazard curves should be coincident and the load, resistance, 
demand, and capacity factors should all be zero.  The figures show that all of these expectations 
were generally realized.  A small oscillation in the zero-uncertainty settlement hazard curve 
(upper right curve in Figure 6.14), which is of numerical origin, leads to a more prominent 
oscillation in the settlement demand factor (lower right curve).  The zero-uncertainty case, in 
which computed probabilities change instantaneously from 0 to 1 when the threshold value of a 
variable is crossed, can be particularly sensitive to numerical discretization considerations; this 
issue disappears for the more realistic case of finite uncertainties.  For a given return period, the 
settlements increase as more load components are considered.  When all components of the LM 
vector are considered, the settlements are approximately twice those obtained for the single 
component analysis. 
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Figure 6.14.  Results of dual load component (i.e., w = f(Q,Vx)) analysis with no uncertainty.  All 
three vertical load and settlement hazard curves are plotted, but are coincident. 
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Fig 6.15.   Results of full load measure vector (i.e., w = f(Q,Vx,Vy, Mx, My)) analysis with no 
uncertainty.  All three vertical load and settlement hazard curves are plotted, but 
are coincident. 

The next step involved the consideration of uncertainty in the IM-LM (Sa-Q) relationship.  
This relationship would normally be the product of a structural analysis that establishes the 
median relationship between ground motion intensity and the loads imposed upon a pile 
foundation.  The dispersion of the structural loads is also required.  This dispersion may be 
estimated by means of multiple structural analyses, or it may be estimated based on past 
experience.  For this analysis, a dispersion 30.0|ln == IMLMLM σβ  was used.  With the inclusion 
of uncertainty in vertical load, the Q1 (vertical load including load uncertainty) should be greater 
than the Q0 (vertical load with zero uncertainty) hazard curve, and the Q2 (vertical load capacity) 
hazard curve should be coincident with the Q1 curve due to the absence to load capacity 
uncertainty.  These effects should be expected to migrate into the settlement hazard curves with 
analogous effects.  Figure 6.16 presents the results of these analyses, in which the anticipated 
behaviors are all observed. 
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Figure 6.16.   Results of analyses with inclusion of uncertainty in IM-LM relationship (βL = 0.30).  
Left-most hazard curves in upper plots are zero-uncertainty curves (Q0 and w0); 
right-most curves in lower plots are coincident curves (Q1 and Q2, w1 and w2). 

Figure 6.17 shows the results of adding uncertainty in the LM-EDP (Q-w) relationship to 
that in the IM-LM (Sa-Q) relationship.  Uncertainty in settlement given loading was characterized 
by a dispersion, βR = 0.50.  The additional uncertainty, as expected, doesn’t affect the load 
hazard curves or the load and resistance factors, but pushes the w1 hazard curve farther to the 
right of the w0 hazard curve.  The w2 hazard curve, due to the lack of uncertainty in displacement 
capacity, is coincident with the w1 hazard curve.  The additional uncertainty leads to a 
significantly higher demand factor. 
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Figure 6.17.   Results of analyses with inclusion of uncertainty in LM-EDP relationship (βR = 
0.50).  Left-most hazard curves in upper plots are zero-uncertainty curves (Q0 and 
w0); right-most curves in lower plots are coincident curves (Q1 and Q2, w1 and w2). 

The next steps were to add uncertainties in capacities, both force capacities and 
displacement capacities.  To this point, all uncertainties in capacities have been zero, so all 
resistance factors and capacity factors have been equal to 1.0.  Figure 6.18 shows the effects of 
uncertainty in vertical in force capacity, which was assumed to be lognormally distributed with 
dispersion, βCQ = 0.3.  The uncertainty in force capacity causes the vertical load capacity (Q2) 
curve to move to the right of the Q1 curve and the resistance factor to drop below 1.0.  The 
displacement capacity is unaffected by the addition of load capacity uncertainty so the w2 curve 
remains coincident with the w1 curve and the capacity factor remains at 1.0. 
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Figure 6.18.   Result of analyses with uncertainty in force capacity included along with 
uncertainties in force and response. 

The effects of uncertainty in response capacity are illustrated in Figure 6.19.  Uncertainty 
in allowable displacement was assumed to be lognormally distributed with dispersion, βCw = 0.6.  
This uncertainty causes the settlement capacity curve (w2) to move to the right of the w1 curve 
and the capacity factor to drop below 1.0.  The demand and capacity factors tend to oscillate to 
some degree due to minor fluctuations in the settlement hazard curves.  The behavior of all 
hazard curves and design factor curves is as would be expected. 
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Figure 6.19.   Result of analyses with uncertainty in force capacity and response capacity 
included with uncertainty in force and response. 

Finally, uncertainties in static and reference loads were added to the other loads.  
Dispersions of 0.1 were assumed for these variables.  The effects of those uncertainties, as shown 
in Figure 6.20, were negligible. 
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Figure 6.20.   Result of analyses with uncertainty in static and reference loads, force, response, 
force capacity, and response capacity. 

6.8 DISCUSSION 

This chapter has presented a framework for the evaluation of design factors that are tied to a 
user-selected return period of limit state exceedance.  This framework follows from one 
developed for structures by Jalayer and Cornell using an approach analogous to that which 
underlies the PEER framework for performance-based earthquake engineering.  The framework 
had to be extended, however, to account for the intermediate load measure variable and the five-
dimensional vector nature of both loading and response for a pile group. 

Both closed-form and numerical solutions are derived.  The closed-form solution requires 
a number of assumptions about variable distributions and about the forms of the median 
relationships between the variables, and is limited to the scalar problem.  It is quite useful, 
however, for illustrating the factor that most strongly affect design factors, and for checking, 
albeit in a limited way, the accuracy of the numerical solution. 

A computer program was written to compute the design factors for general conditions.  
The program requires the user to provide data on the structural loading, the geometry and 
properties of the foundation, the soil conditions, and the ground motion hazards.  It then 
performs the required calculations for five components of loading and five components of 
response.  Because these calculations involve integration in five dimensions, they are time-
consuming.  The program was executed using data that conformed to the assumptions of the 
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closed-form solution and was shown to match the results of the closed-form solution very well 
for various permutations of different relationships and uncertainty levels.  The program was then 
executed in vector mode, i.e., with all components of loading and response computed 
simultaneously.  The performance under these conditions was found to be reasonable, although 
numerical issues related to integration increment size led to a degree of fluctuation in design 
factor with return period for some cases. 
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7 Design Factors 

7.1 INTRODUCTION 

The framework described in Chapter 6 can be used to determine load, resistance, demand, and 
capacity factors for pile groups under different initial conditions in different seismic 
environments.  As indicated previously, there are a virtually infinite number of bridge and pile 
group configurations with a virtually infinite number of different initial conditions, response 
relationships, and uncertainty levels.  In order to illustrate the framework and the results it can 
produce, an extensive series of analyses were performed.  The purpose of these analyses was to 
establish the general range of load and resistance factors, and of displacement-based demand and 
capacity factors, for a typical pile group, and to illustrate the sensitivities of those factors to a 
number of different quantities.  The results of the analyses illustrate the effects of uncertainty on 
load and resistance factors and on demand and capacity factors, and help illustrate the prospects 
for load- and displacement-based approaches to improved seismic design of pile foundations. 

7.2 DESIGN FACTORS 

Seismic design can be accomplished in a number of different ways.  Historically, design has 
been based on loads and resistances, and reliability-based design has commonly been 
implemented using a load and resistance factor approach.  For essentially static loading 
conditions, time-invariant load and resistance factors can be developed for a given reliability 
index, or probability of failure.  For seismic design, however, load and resistance factors must 
account for the variability in loading that can occur – high levels of loading can occur in strong 
earthquakes that occur relatively rarely, and lower levels of loading can occur in weaker 
earthquakes that occur more frequently.  To develop a design that considers all potential levels of 
loading and their likelihoods of occurrence in a particular area, performance-based concepts can 
be used to combine the results of probabilistic seismic hazard analyses with probabilistic 
structural and foundation response analyses to predict a mean annual rate of failure, which is 
approximately equal to an annual probability of failure.  Load and resistance factors consistent 
with an annual probability of failure can then be determined. 

More recently, seismic design has moved toward a displacement basis since performance 
is more closely related to displacements than to forces.  The process of predicting displacements 
from forces, however, involves additional uncertainty and that uncertainty, while not well 
understood by the geotechnical engineering profession at this time, is recognized as being 
substantial.  A performance-based framework can be developed to express displacement demand 
and capacity factors that are consistent with an annual probability of exceeding some allowable 



160 

displacement.  Since these demand and capacity factors reflect uncertainties in load and in 
displacement given load, they can be expected to be more extreme, i.e., displacement-based 
demand factors to be higher than load factors and displacement-based capacity factors to be 
lower than resistance factors.   

7.3 PARAMETRIC ANALYSES 

A series of parametric analyses were performed to illustrate the behavior of both load-based and 
displacement-based design factors.  To make the amount of data manageable, the parametric 
analyses were conducted with respect to a “base case” system that was considered to be 
representative of the conditions that might exist for an actual bridge foundation.  Deviations from 
the base case conditions were analyzed to explore the effects of various parameters on design 
factors.  Other base cases could also be used with the program developed for this project. 

7.3.1 Base Case Conditions 

The analyses were performed relative to a set of base case conditions.  The base case consisted of 
a particular structure supported by a particular pile foundation in a particular seismic 
environment.  The characteristics of the base case model were described in detail in Section 
5.2.1, but are reviewed briefly again below. 

7.3.1.1 Structure and Pile Group 

The base case structure was idealized as a concentrated mass at the top of a single distributed-
mass column.  The loading applied to the foundation was assumed to be related to the 5% 
damped spectral acceleration at a period of 0.5 sec, i.e., Sa(0.5).   

The base case pile group is a 5x5 group of 61-cm (24-inch) steel pipe piles spaced at 2.5 
diameters center-to-center.  The individual piles are 19.3 m (60 ft) long, and are connected by a  
1.07 m (3.5 ft) thick pile cap with plan dimensions of 3.96 m by 3.96 m (13 ft by 13 ft).  The top 
of the pile cap is flush with the ground surface. 

7.3.1.2 Loading Conditions 

The structural model of a single mass atop a single column is overly simplified for most actual 
bridges.  In order to extract more information from each analysis, lateral loads and overturning 
moments were assumed to develop at different rates in the different orthogonal directions.  The 
loading functions were selected more for their ability to illustrate different levels of response and 
their effects on load, resistance, capacity, and demand factors than for their applicability to a 
particular structure.  The five individual components of loading were taken as indicated in Table 
7.1.  The relationships indicate different levels of loading for each of the components; four of the 
five are linear and one is nonlinear.  Different loading relationships were selected for the 
different horizontal directions to avoid computing duplicate responses and in recognition that 
most bridges will respond differently in the longitudinal and transverse directions. 
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Table 7.1.   Base case IM-LM relationships. 

Component Symbol (units) Relationship 
Vertical load Q (kN) )5.0(8487 aSQ =  
Lateral load, x-direction Vx (kN) [ ] 9.0)5.0(2122 ax SV =  
Lateral load, y-direction Vy (kN) )5.0(4244 ay SV =  
Moment, x-direction Mx (kN-m) )5.0(3106 ax SM =  
Moment, y-direction My (kN-m) )5.0(6212 ay SM =  

7.3.1.3 Uncertainty Levels 

The base case model includes a number of sources of uncertainty.  Because little statistical data 
is available to constrain most of the uncertainties, most of them had to be estimated.    The values 
used in the base case analyses are listed in Table 7.2.   

Table 7.2.   Base case uncertainty levels. 

Quantity Distribution Parameter 
Static loads Normal COVSL = 0.10 
Reference loads Normal COVRL = 0.10 
Load measure Lognormal 30.0|ln == IMLML σβ  
Engineering demand parameter Lognormal (see Table 5.8) 
Force capacity Lognormal 30.0, =LMCβ  
Displacement capacity Lognormal 60.0, =EDPCβ  

 

Note that uncertainty in the earthquake ground shaking intensity is accounted for in the 
probabilistic seismic hazard analysis used to determine the Sa(0.5) hazard curve.  The value of 
βL, therefore, represents the uncertainty in loading given some value of Sa(0.5).  Similarly, the 
value of βR represents the uncertainty in response given some level of loading. 

7.3.2 Ground Motion Hazards 

At each site, ground motion hazard data was expressed in terms of spectral acceleration for a 5% 
damped oscillator with a natural period of 0.5 sec.  Values of Sa(0.5 sec) were obtained for each 
of 16 site locations spread across California and Washington.  The spectral accelerations 
assumed Vs30 = 360 m/sec from the USGS 2008 deaggregation website 
(https://geohazards.usgs.gov/deaggint/2008/).  Table 7.1 shows the spectral acceleration values at 
six return periods for each of the sites.   
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Table 7.3   Spectral acceleration (T = 0.5 sec) values (g) for 16 cities in California and 
Washington (g). 

State City Return Period (yrs) 
72 224 475 975 2475 4975 

C
al

ifo
rn

ia
 

Eureka 0.2730 0.6985 1.2556 1.9001 2.8567 3.6304 
Fresno 0.1389 0.2209 0.2884 0.3654 0.4856 0.5986 
Irvine 0.2700 0.4483 0.6049 0.7988 1.1450 1.5123 
Los Angeles 0.3485 0.6646 0.9598 1.3156 1.8677 2.3265 
Redding 0.1267 0.2258 0.3204 0.4469 0.6654 0.8671 
Sacramento 0.1636 0.2552 0.3286 0.4055 0.5211 0.6210 
San Diego 0.1598 0.2703 0.3952 0.6077 1.0878 1.5368 
San Francisco 0.3729 0.6774 0.9274 1.2019 1.5841 1.8875 

W
as

hi
ng

to
n 

Aberdeen 0.1534 0.3773 0.6379 0.9897 1.6008 2.1804 
Bellingham 0.1562 0.3125 0.4516 0.6159 0.8705 1.0904 
Olympia 0.2130 0.4357 0.6385 0.8792 1.2390 1.5503 
Richland 0.0482 0.1036 0.1573 0.2282 0.3560 0.4885 
Seattle 0.2181 0.4359 0.6307 0.8598 1.2120 1.5132 
Spokane 0.0363 0.0795 0.1211 0.1780 0.2800 0.3857 
Vancouver 0.1060 0.2685 0.4291 0.6210 0.9223 1.1762 
Yakima 0.0799 0.1571 0.2292 0.3169 0.4649 0.5982 

 

Hazard curves for the 16 sites are shown graphically in Figure 7.1.  The curves can be 
seen to cover a wide range of seismicity levels and to have wide ranges of sensitivity of spectral 
acceleration to return period.  975-yr spectral accelerations range from 0.41 g to 1.9 g for the 
California sites and from 0.18 g to 0.98 g for the Washington sites.  Ratios of 4,975-yr to 72-yr 
spectral accelerations (a measure of hazard curve slope, or sensitivity of spectral acceleration to 
return period) range from 3.8 to 13.3 for the California sites and from 6.9 to 14.2 for the 
Washington sites.  Low values of this ratio indicate sites where frequent motions are strong 
relative to more rarely occurring motions.  The 16 sites include some of the most seismically 
active areas in the United States, areas dominated by crustal seismicity and areas dominated by 
subduction zones, and areas dominated by nearby faults and areas most strongly affected by 
distant faults.  This selection of sites is considered sufficiently broad to allow general 
conclusions about load and resistance factor behavior to be drawn. 
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Figure 7.1   Spectral acceleration hazard curves for selected cities in California and 
Washington. 

7.3.3 Base Case Response and Design Factors 

The initial base case analyses were performed assuming that the base case site was located in San 
Francisco.  With the high seismicity of the San Francisco Bay Area, the spectral accelerations at 
long return periods were quite high.  The computed response for vertical load and vertical 
displacement are shown in terms of hazard curves in Figure 7.2.  The hazard curves are shown 
for mean annual rates of exceedance (or annual probabilities) ranging from 0.0001 yr-1 to 0.01 yr-

1, which corresponds to a return period range of 100 to 10,000 yrs.  The full hazard curves were 
computed for a broader range of return periods, but the range shown here focuses on levels 
commonly used for design of civil structures.   

In the sections that follow, hazard curves are plotted in groups of three curves 
corresponding to a particular set of conditions.  Within each set, the left-most curve represents 
the zero-uncertainty conditions, i.e., LM0 (Section 6.4.1) or EDP0 (Section 6.5.1).  The middle 
curve includes uncertainty in the system the loading for LM1, and in both loading and response 
for EDP1.  Finally, the right-most curve represents the limit state with uncertainty in loading, 
response, and capacity (LM2 for load components and EDP2 for response components).  To avoid 
excessive clutter, the individual curves will not be labeled in the figures; their meanings are 
considered to be understood by the reader. 
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Figure 7.2   Hazard curves for vertical load and settlement for base case system in sand profile 
located in San Francisco.  Blue curves represent zero-uncertainty values, Q0 and 
w0.  Green curves represent values considering load and response uncertainty, Q1 
and w1.  Red curves indicate values considering capacity uncertainty, Q2 and w2. 

Both sets of hazard curves appear to be well-behaved.  As expected, low levels of force 
and settlement are exceeded relatively frequently and high levels more rarely.  The zero 
uncertainty cases (blue curves) are the lowest for both load and settlement.  The curves that 
include uncertainty in loads and displacements (green curves) are higher than the blue curves, 
illustrating the “amplifying” characteristics of uncertainty that were described in Chapter 3.  
Finally, the limit state (red) curves, which include the effects of uncertainty in force and 
displacement capacities, are the highest curves.  It should be noted that, although the settlement 
curves are presented here with the vertical load curves, the settlements are also influenced by 
both lateral loads and both overturning moments. 

The load and response hazard curves can be used to determine load and resistance 
factors, and capacity and demand factors, respectively, as described in Sections 6.4.1 and 6.5.1.  
Figure 7.3 presents load and resistance factors computed directly from the hazard curves of 
Figure 7.2.  In Figure 7.3, load and demand factors are shown in blue and resistance and capacity 
factors are shown in green.  In all subsequent plots, load and demand factors will have values 
greater than one and resistance and capacity factors will have values less than one.  With that 
understanding, the individual curves will not be labeled in the figures.  The load and resistance 
factors can be seen to vary smoothly with return period, and to deviate from values of 1.0 at 
increasing rate with increasing return period (i.e., decreasing mean annual rate of exceedance, λ).  
The rate of increase appears to be nearly constant on the semi-logarithmic plot, and the curve is 
quite smooth.  The displacement capacity and demand curves also show a trend of increasing 
deviation from 1.0 with increasing return period, but the curves, particularly the demand curve, 
are not as smooth as the load and resistance factor curves.   
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Figure 7.3   Load and resistance factor curves, and demand and capacity factor curves for 
base case system in sand profile located in San Francisco.  Blue (right-most) 
curves represent load and demand factors.  Green (left-most) curves represent 
resistance and capacity factors. 

The source of this behavior, which is pervasive throughout the numerically-computed 
results that follow, lies primarily in the calculation of the zero-uncertainty settlement curve.  The 
zero-uncertainty vertical load curve is a function only of spectral acceleration, a scalar quantity, 
so the median IM-LM relationship can be inverted numerically to compute the median load at a 
particular spectral acceleration directly; as a result, the zero-uncertainty load value is as smooth 
as the spectral acceleration hazard curve.  The zero-uncertainty settlement curve, however, is a 
function of all five components of the LM vector and must therefore be computed by numerical 
integration over the cumulative distribution functions of all possible combinations of the five 
forces/moments.  These cumulative distribution functions, however, are step functions for the 
zero-uncertainty case, which means that there is a sudden jump in the contribution of each 
increment to the zero-uncertainty settlement value; perfect resolution of the location of this jump, 
which would provide a perfectly smooth settlement hazard curve, would require infinitely small 
increments of each of the components of the LM vector.  The numerical integration process 
necessarily uses finite increments, so its smoothness depends on the size of the increments over 
which the integration is performed.  The time required to perform the integration, however, 
increases as a power function of the number of integration increments.   

The competing goals of accuracy and speed require a compromise, the result of which is 
a zero-uncertainty settlement curve that is not perfectly smooth.  Close examination of the zero-
uncertainty settlement hazard curve (blue curve) in Figure 7.2 reveals that it has some 
fluctuations about what would be a perfectly smooth curve of the same general shape, 
particularly at lower settlement values where the three curves are relatively close together.  
Actually, the curve with consideration of uncertainty (green curve) also has some fluctuations 
but they are smaller than those of the zero-uncertainty curve.  When the demand factor is 
calculated as the ratio of the settlement including uncertainty to the zero-uncertainty settlement, 
the fluctuations in the hazard curves lead to readily visible fluctuations in the computed demand 
factor, and also to more subtle fluctuations in the capacity curve.  These fluctuation should be 
recognized as being of numerical origin, and not interpreted as reflecting real variations 
associated with small changes in return period. 

Hazard curves for all LM and EDP components from the base case analysis are shown in 
Figures 7.4 and 7.5.  The EDP hazard curve plots cover the ranges over which each EDP 
component was computed.  The ranges are not known in advance of the analysis, and so some of 
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the curves, particularly for parameters with high uncertainties, plot only partially within the 
bounds of the graphs.  Those curves are computed for broader EDP ranges than appear in the 
graphs, though, so the design factors computed over the plotted ranges are still applicable.  In 
examining the moment and rotation hazard curves, it is important to recall the notation used in 
this investigation – the moments, Mx and My, act in the x- and y-directions while the rotations, θx 
and θy, act about the x- and y-axes.  Thus, in the absence of other components, the moment, Mx, 
would produce the rotation, θy, and the moment, My, would produce the rotation, θx.  This 
nomenclature explains why the θy values are smaller than the θx values when the My values are 
greater than the Mx values. 

 

  

Figure 7.4.   LM hazard curves for base case 
analysis of San Francisco site. 

Figure 7.5.   EDP hazard curves for base 
case analysis of San Francisco 
site. 

The load and resistance factors computed from the LM hazard curves of Figure 7.4 are 
presented in Figure 7.6.  The load and resistance factors can be seen to be very well behaved.  
Because the uncertainty levels of the various LM components were taken to be the same, the load 
and resistance factors have similar values, even though the LM hazard curves themselves do not.  
Load factors increase with increasing return period, and have values ranging from about 1.1 to 
1.2.  These values result directly from the spectral acceleration hazard curve, the assumption of 
linear Sa-Q behavior, and the vertical load dispersion value of βL = 0.3.   

Demand and capacity factors are shown in Figure 7.7.  The demand factors can be seen to 
be considerably larger than the load factors shown in Figure 7.6.  This behavior results from the 
additional uncertainty in response given loading.  The values of the demand factors are different 
for the different components of response due both to differences in the uncertainties of the 
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different components (e.g., βw = 0.434 and βθy = 0.740) and the different sensitivities of the 
response components to the different load components. 

  

Figure 7.6.   Load and resistance factors from 
base case analysis of San 
Francisco site. 

Figure 7.7.   Demand and capacity factors 
from base case analysis of San 
Francisco site. 

7.3.4 Effects of Local Seismicity 

One of the primary benefits of the performance-based approach developed in this research is the 
manner in which it accounts for local seismicity, i.e., ground motion hazards.  Whereas 
conventional design is based upon ground motions with a specific return period, the 
performance-based approach integrates loads and responses over all levels of ground shaking.  
The resulting load and response hazard curves account for small earthquakes and low levels of 
ground shaking that occur frequently, large earthquakes and high levels of ground shaking that 
occur only rarely, and all other levels of shaking in between.  In this manner, they provide a 
more complete indication of the expected levels of load and response in areas of different 
seismicity. 

Different areas of the country have very different levels and rates of seismic activity.  
Even within the states of California and Washington, Figure 7.1 shows a wide variety of seismic 
ground motion hazards.  To investigate the effects of local seismicity on load, resistance, 
demand, and capacity factors, the base case system was assumed to be located at each of the 16 
sites listed in Table 7.3.  Two pairs of sites are used to illustrate the effects of local seismicity on 
loads, response, and design factors. 
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Eureka and Irvine are both located in California and have hazard curves of similar 
hazards (i.e., mean annual rates of exceedance, or return periods) at low levels of shaking, but 
very different hazard levels at strong shaking levels.  The 72-yr spectral accelerations at these 
two locations are nearly equal (0.273g for Eureka and 0.270g for Irvine), but the 4,975-yr values 
differ by a factor of about 2.4 (3.63g for Eureka and 1.51g for Irvine).  The Eureka hazard curve 
is much flatter than the Irvine curve, indicating that many more instances of strong shaking per 
instance of weak shaking are expected in Eureka than in Irvine.   

The horizontal load (Vx) and lateral displacement (u) hazard curves computed for Eureka 
and Irvine are shown in Figures 7.8 and 7.9.  The lateral load hazards at relatively short return 
periods ( =

xVλ  0.01 yr-1 or TR = 100 yrs) are similar, as would be expected since the hazard 
curves are close to each other at short return periods.  The lateral loads at long return periods 
( =

xVλ  0.0001 yr-1 or TR = 10,000 yrs), however, are much different – the lateral loads at Eureka 
are more than double those at Irvine.  The spread between the LM hazard curves, which reflects 
the values of the load and resistance factors, are also different at Eureka and Irvine.  The 
displacement hazard curves are also quite different.  The displacement curves at Eureka at 100 
hrs are somewhat higher than those at Irvine, but the Eureka displacement values at 10,000 yrs 
are about 1.7 times larger than those at Irvine.  Although they indicate smaller displacements for 
the same return period, the Irvine displacement hazard curves can also be seen to be spaced more 
widely than the Eureka curves. 

 

  

Figure  7.8   Hazard curves for horizontal load 
and lateral displacement for 
Eureka. 

Figure  7.9   Hazard curves for horizontal load 
and lateral displacement for 
Irvine. 

The design factors corresponding to the load and displacement hazard curves for Eureka 
and Irvine are shown in Figures 7.10 and 7.11.  Although loads and displacements at Eureka are 
higher than those at Irvine at all return periods, the design factors are different for the two 
locations.  The load and resistance factors are similar at return periods of 100 and 10,000 yrs, but 
the load factors are somewhat higher and the resistance factors somewhat lower for Irvine than 
for Eureka.  More significant differences can be seen in the demand and capacity factors – the 
demand factors for Irvine are higher at all return periods, and particularly at longer return 
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periods, for Irvine than for Eureka.  The capacity factors are slightly lower for Irvine than for 
Eureka. 

It is useful to compare the design factors from these analyses with those obtained for the 
closed-form solution.  Under the idealized conditions for which the closed-form solutions are 
applicable, the design factors are not affected by return period.  As shown in Figures 6.12 and 
6.13, for example, plots of load, resistance, demand, and capacity factors from the closed-form 
solution are all vertical.  The numerically-computed design factors shown in Figures 7.10 and 
7.11, however, do vary with return period – the load and demand factors increase with increasing 
return period and the resistance and capacity factors decrease with increasing return period.  
Since the load and displacement models used in the numerical analyses satisfy the assumptions 
of the closed-form solution, the observed return period dependence of the design factors results 
from the non-power law form of the actual spectral acceleration hazard curves. 

 

  

Figure 7.10   Load and resistance factors and 
demand and capacity factors for 
lateral loads and displacements 
at Eureka. 

Figure 7.11   Load and resistance factors and 
demand and capacity factors for 
lateral loads and displacements at 
Irvine. 

Additional insight can be gained by comparing two other sites.  Seattle and Aberdeen 
have spectral acceleration hazard curves that cross at a return period near 475 yrs.  The Aberdeen 
curve, however, is flatter than the Seattle curve, which indicates that it has lower hazards for 
weak levels of shaking and higher hazards for stronger shaking.  The load and displacement 
hazard curves for Aberdeen and Seattle are shown in Figures 7.12 and 7.13.  The lateral loads at 
the 100-yr return period are higher for Seattle than for Aberdeen, but the opposite is true at the 
10,000-yr return period level.  With respect to displacements, the displacement hazards at 
Aberdeen are higher than those at Seattle for the entire range of return periods. 
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Figure  7.12   Hazard curves for horizontal 
load and lateral displacement 
for Aberdeen. 

Figure  7.13   Hazard curves for horizontal load 
and lateral displacement for 
Seattle. 

As shown in Figures 7.14 and 7.15, the load and resistance factors for Aberdeen deviate 
from 1.0 slightly less than the Seattle factors, and the capacity factors are similar.  The demand 
factors for Aberdeen are close to those for Seattle at relatively short return periods, but are 
significantly higher for longer return periods. 

 

  

Figure 7.14   Load and resistance factors and 
demand and capacity factors for 
lateral loads and displacements 
at Aberdeen. 

Figure 7.15   Load and resistance factors and 
demand and capacity factors for 
lateral loads and displacements 
at Seattle. 

As indicated in Equation 3.27, a seismic hazard curve can usually be approximated over 
some range of ground motion hazards by a power law relationship 

 k
IM IMkim −= )()( 0λ  (3.27) 

in which k0 controls the “height” and k the “slope” of the hazard curve.  Given two points on a 
ground motion hazard curve – (

1
,1 IMIM λ ) and (

2
,2 IMIM λ ) – the values of k0 and k that describe 

the hazard curve within (and slightly beyond) the range between IM1 and IM2 can be computed 
as  
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The 475- and 2,475-yr USGS spectral acceleration hazard values from Table 7.3, were used to 
compute the values of k0 and k shown in Table 7.4. 

Table 7.4   Coefficients for idealized power law approximation of spectral acceleration hazard 
curve. 

Location Coefficient, k0 Coefficient, k 

C
al

ifo
rn

ia
 

Eureka 4.0482 0.02830 
Fresno 5.8042 6.1E-06 
Irvine 4.5846 0.00075 
Los Angeles 4.7106 0.00766 
Redding 4.1469 7.46E-05 
Sacramento 6.5811 5.54E-06 
San Diego 2.8351 0.00051 
San Francisco 5.9783 0.00632 

W
as

hi
ng

to
n 

Aberdeen 3.4328 0.00203 
Bellingham 4.7710 0.00021 
Olympia 4.8118 0.00113 
Richland 3.7118 8.74E-06 
Seattle 4.8079 0.00102 
Spokane 3.6438 3.91E-06 
Vancouver 4.1732 0.00029 
Yakima 4.3072 1.49E-05 

 

According to the closed-form solutions given in Equations 6.45, the demand and capacity 
factors should be influenced by the slope of the ground motion intensity hazard curve and the 
curvatures inherent in the load and response relationships.  The variation of 10,000-yr demand 
factors with the slope coefficient, k, is shown for all five response variables in Figure 7.16.  The 
demand factors can be seen to decrease with increasing value of k, i.e., with increasing spectral 
acceleration hazard curve slope.  Thus, the expected trend of steeper ground motion hazard 
curves leading to higher demand factors is seen, albeit with some scatter, in the numerical 
results.  This result shows the importance of utilizing the entire ground motion hazard curve in 
the determination of design factors. 
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Figure 7.16.   Illustration of reduction of demand factor with increasing ground motion hazard 
curve slope. 

7.3.5 Effects of Pile Group Size 

The size of a pile group will affect the loads it attracts and the manner in which it responds to 
those loads.  A series of analyses were performed assuming that 3x3, 5x5, and 7x7 pile groups 
existed at the same site and wee subjected to the same loading.  Given that the loading was the 
same for each pile group size, the load hazard curves should be expected to be the same.  Figure 
7.17 shows that the vertical load hazard curves are identical and that the load and resistance 
factors are also the same (Figure 7.18) for all three pile group sizes. 

 

  

Figure 7.17   Effect of pile group size on 
vertical load hazard curves. 

Figure 7.18   Vertical load and resistance 
factors for pile groups of different 
sizes. 
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The pile group responses, however, should be expected to be different with the 3x3 pile 
group tending to displace/rotate more than the 5x5 pile group, and the 5x5 pile group to 
displace/rotate more than the 7x7 pile group.  This behavior shows up clearly in Figure 7.19 – 
the settlement hazard curves for the 3x3 pile group fall well to the right of those of the 5x5 pile 
group and, in turn, the 7x7 pile group.  The corresponding demand and capacity factors (Figure 
7.20), however, are much more tightly grouped.  The zero-uncertainty settlement curve 
oscillations lead to oscillations in the demand factors, but the demand factors for all the 
foundation sizes are relatively consistent.  The capacity factors are all quite consistent. 

 

  

Figure 7.19   Effect of pile group size on 
settlement hazard curves. 

Figure 7.20   Settlement displacement demand 
and capacity factors for pile 
groups of different sizes. 

The behavior observed for the other components of loading and response behaved in a 
similar manner.  Figures 7.21 and 7.22 show that the horizontal load hazard curves and the load 
and resistance factors are all identical.  Figure 7.23 shows that lateral displacements increase 
with decreasing pile group size, and that the curves are spread more widely than the settlement 
hazard curves shown in Figure 7.19.  Accordingly, the settlement demand factors (Figure 7.24) 
are higher and capacity factors lower than for the settlement demand and capacity factors.  The 
lateral displacement demand factors show a smoother shape and a more persistent trend of 
increasing demand factor with increasing foundation size. 
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Figure 7.21   Effect of pile group size on lateral 
load hazard curves. 

Figure 7.22   Lateral load and resistance 
factors for pile groups of 
different sizes.  

  

Figure 7.23   Effect of pile group size on 
lateral displacement hazard 
curves. 

Figure 7.24   Lateral displacement demand 
and capacity factors for pile 
groups of different sizes.   

7.3.6 Effects of Initial Static Loads 

The displacement and/or rotation of a bridge foundation under seismic loading is also influenced 
by the level of static loading that exists before and during earthquake shaking.  To investigate the 
effects of static loading on design factors, a series of analyses were performed with the base case 
foundation subjected to different levels of static loading.  Five load cases with different levels of 
all five load components were defined as indicated in Table 7.5. 

Table 7.5   Static load cases. 

Static Loads Case 1 Case 2 Case 3 Case 4 Case 5 
Qs 20 40 60 80 100 
Vxs 5 10 15 20 25 
Vys 5 10 15 20 25 
Mxs 10 20 30 40 50 
Mys 10 20 30 40 50 
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The lateral displacement hazard curves for all five load cases are shown in Figure 7.25.  
The three sets of hazard curves for each static load case each show a progression of increasing 
displacement with increasing initial static loads – in other words, each set of five curves indicate, 
from left to right, the results for Cases 1-5, respectively.  Similar behavior was observed for the 
other components of displacement and for other site locations. 

 

Figure 7.25   Effects of static loads on lateral displacement hazard curves.  Each set of five 
curves represents, from left to right, static load cases 1-5 as defined in Table 7.5. 

Variations in displacement hazard curves due to differences in static loads lead to 
variations in demand and capacity factors.  The demand and capacity factors for the five static 
load cases are shown in Figure 7.26.  The demand factors can be seen to decrease with increasing 
return period, but at a rate that decreases with increasing initial static load level.  At short return 
periods, the demand factor is insensitive to static load level, but the degree of sensitivity 
increases with increasing return period.  The capacity factors tend to decrease with increasing 
initial static load level, but at a relatively slow rate. 

 

Figure 7.26   Demand and capacity factors for base case system subjected to static load cases 
defined in Table 7.5. 
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7.3.7 Effects of Structural Behavior 

The characteristics of a bridge structure can strongly affect the loading imposed on a pile 
foundation, and consequently affect the displacement/rotation of that foundation.  A typical 
bridge structure will exhibit essentially linear response under low levels of loading, such as the 
type of earthquake shaking that occurs at low return periods.  Many bridge structures are 
designed to respond inelastically under strong shaking, however, and the resulting nonlinear 
response can impose limits on the amplitudes of loading imposed on their foundations. 

In order to investigate the effects of structural behavior on pile foundation response and 
accompanying design factors, a series of analyses assuming different IM-LM response 
characteristics was performed.  In these analyses, the structure was assumed to exhibit 
hyperbolic IM-LM response with the hyperbolic parameters adjusted to produce different degrees 
of nonlinearity.  Considering the lateral load-displacement response, a hyperbolic IM-LM 
relationship can be defined as 

 

K
SV

KSV
ax

a
x

max,1+
=          (7.2) 

where K and Vx,max are constants.  The variable, K, represents the initial slope of the IM-LM 
relationship, i.e., the ratio of Vx to Sa at low Sa values, and Vx,max is the maximum value of Vx, 
which is reached at very large Sa values.  Figure 7.27 shows the relationships between lateral 
load and spectral acceleration for four assumed IM-LM relationships with different values of 
maximum lateral load.  All four relationships have the same initial slope, but exhibit different 
degrees of nonlinearity due to the different maximum lateral load values. 

 

Figure 7.27   Variation of lateral load with spectral acceleration for different nonlinear structural 
models. 

The effect of structural response on lateral load hazard curves is shown in Figure 7.28.  
As the degree of nonlinearity increases (i.e., as the lateral load for a given Sa value decreases), 
the lateral loads at a given return period decrease, which is to be expected given the relationships 
illustrated in Figure 7.27.  The decreasing lateral load values are accompanied by steepening of 
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the lateral load hazard curves.  The positions and shapes of the lateral load hazard curves interact 
with the uncertainties in lateral loads (which were identical for all four IM-LM relationships) to 
affect the load and resistance factors.  Figure 7.29 shows that the load factors increase and 
resistance factors decrease with increasing degree of nonlinearity.  This behavior is consistent 
with the steepening of the lateral load hazard curves.  Thus, the load values decrease with 
increasing degree of nonlinearity, but the load factors increase and capacity factors decrease. 
 

  

Figure 7.28   Effects of structural response 
nonlinearity on lateral load 
hazard curves. 

Figure 7.29   Effects of structural response 
nonlinearity on load and 
resistance factors. 

The effects of structural response nonlinearity on the displacement hazard curves is 
shown in Figure 7.30.  Because the structural response affects all three lateral load hazard curves, 
it also affects all three lateral displacement hazard curves.  As the level of structural response 
nonlinearity increases, the lateral displacement hazards decrease and the curves become steeper.  
The resulting displacement demand factors, as shown in Figure 7.31, tend to increase with 
increasing structural response nonlinearity. 

  

Figure 7.30   Effects of structural response 
nonlinearity on lateral 
displacement hazard curves. 

Figure 7.31   Effects of structural response 
nonlinearity on demand and 
capacity factors. 
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7.3.8 Effects of Load Measure Uncertainty 

The dynamic loading applied to a pile foundation depends on the characteristics of the ground 
motion and of the bridge supported by the foundation.  First-mode spectral acceleration is 
commonly used as an intensity measure, but record-to-record variability as well as uncertainties 
in the physical characteristics of the bridge and the models used to predict bridge response will 
lead to uncertainties in the predicted structural response.  A series of analyses were performed 
with different levels of LM uncertainty; the effects of four different levels on lateral load hazard 
curves and resulting load and resistance factors are shown in Figures 7.32 and 7.33, respectively.  
The load measure uncertainty does not affect the zero-uncertainty lateral load (LM0) value, but it 
does cause the other (LM1 and LM2) hazard curves to move to the right by amounts that depend 
on the uncertainly level.  As would be expected, increasing LM uncertainty leads to higher load 
factors.  The resistance factors, however, are unaffected by the uncertainty in load measure. 

 

  

Figure 7.32   Lateral load hazard curves for 
different levels of uncertainty in 
lateral load given spectral 
acceleration. 

Figure 7.33   Load and resistance factors for 
different levels of uncertainty in 
lateral load given spectral 
acceleration. 

The effects of load measure uncertainty propagate through the response analyses to 
influence the response levels and the demand factors.  Figure 7.34 illustrates the effects of lateral 
load uncertainty on the lateral displacement hazard curves.  The zero-uncertainty displacements 
are not affected by lateral load uncertainty, but increasing levels of load measure uncertainty 
push the other displacement hazard curves (i.e., the curves for EDP1 and EDP2, in this case u1 
and u2) to the right.  This effect manifests itself in increasing displacement demand factors, as 
shown in Figure 7.35.  Although the displacement hazard curves that reflect capacity are also 
moved to the right due to load measure uncertainty, they are moved in a proportional manner that 
does not affect the capacity factor. 
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Figure 7.34   Lateral displacement hazard 
curves for different levels of 
uncertainty in lateral load given 
spectral acceleration. 

Figure 7.35   Demand and capacity factors for 
different levels of uncertainty in 
lateral load given spectral 
acceleration. 

7.3.9 Effects of Engineering Demand Parameter Uncertainty 

As indicated in Chapter 5 and quantified in Table 5.4, prediction of pile cap displacements given 
seismic loading is highly uncertain.  As predictive models improve and as more data is 
generated, this uncertainty can be reduced, but the values indicated by the OpenSees analyses 
performed in this study remain relatively high.  To investigate the effects of uncertainties in 
displacements on design factors, analyses were performed with several different assumed EDP 
uncertainty levels.  The results of those analyses are illustrated with respect to lateral loads and 
lateral displacements.  Figures 7.36 and 7.37 illustrate the effects of uncertainty in displacement 
on lateral load hazard curves and load and resistance factors.  The figures show the expected 
result that uncertainty in the displacements given loading have no effect on the loading or the 
load-based design factors. 

  

Figure 7.36   Lateral load hazard curves for 
different levels of uncertainty in 
lateral displacement. 

Figure 7.37   Load and resistance factors for 
different levels of uncertainty in 
lateral displacement. 
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The uncertainty in lateral displacement has a strong effect on the lateral displacement 
hazard curves.  As shown in Figure 7.438, the lateral displacement hazard curves considering 
uncertainty and capacity move to the right with increasing uncertainty level; the zero-uncertainty 
displacement hazard curves are all identical.  The variations on displacement hazard curves 
produce corresponding differences in design factors.  Figure 7.39 shows that displacement 
demand factors increase significantly with increasing displacement uncertainty.  The effects of 
uncertainty in displacement on capacity factors, however, are very small. 

 

  

Figure 7.38   Lateral displacement hazard 
curves for different levels of 
uncertainty in lateral 
displacement. 

Figure 7.39   Demand and capacity factors for 
different levels of uncertainty in 
lateral displacement. 

7.3.9.1 Effect of Soil Type 

The calculations can be performed for any foundation model for which LM-EDP behavior has 
been characterized.  Table 5.4 presented such relationships for pile foundations in a clay deposit.  
The pile group capacity for the clay site is considerably lower than for the sand deposit, which is 
to be expected given the fundamental differences in the resistances of such soils to foundation 
loading.  The manner in which axial and lateral load resistance is mobilized in clays and sands 
are significantly different as well.  Once the capacity of a foundation in clay is mobilized, 
displacements increase much more rapidly than in the case of sands in which resistance tends to 
continue to increase due to increases in effective confining pressure. 

The vertical load-settlement response for the base case system in clay is shown in Figure 
7.40.  Compared with the foundation in sand, shown in Figure 7.2, the settlements are 
considerably larger for the foundation in clay, and they increase much more quickly with 
increasing return period.  The zero-uncertainty (blue) settlement hazard curve can be seen to 
fluctuate mildly from a smooth shape due to the size of the integration increment.  Because the 
range of settlements for the foundation in the clay profile was much larger than for the sand 
profile, the integration increment was also higher.  A smoother curve could be obtained with a 
smaller integration increment, but the required calculations would take longer. 
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Figure 7.40   Hazard curves for vertical load and settlement for base case system in clay profile 
located in San Francisco.  Blue curves represent zero-uncertainty values, Q0 and 
w0.  Green curves represent values considering load and response uncertainty, Q1 
and w1.  Red curves indicate values considering capacity uncertainty, Q2 and w2. 

Figure 7.41 presents load and resistance factors computed directly from the hazard curves 
of Figure 7.40.  The load and resistance factors can be seen to vary smoothly with return period, 
and to deviate from values of 1.0 at increasing rate with increasing return period (i.e., decreasing 
mean annual rate of exceedance, λ).  The rate of increase appears to be nearly constant on the 
semi-logarithmic plot, and the curve is quite smooth.  The displacement demand factor curve 
also varies with return period, first increasing and then decreasing as was observed for the sand 
profile in Figure 7.3.  The demand factors for the clay profile case are generally larger than those 
for the sand profile; the capacity factors are also somewhat larger. 

The demand factor curve is not as smooth as the load factor curve due to the previously 
described fluctuations in the zero-uncertainty settlement curve.  The capacity factor curve is 
generally smoother than the demand factor curve, but has a portion that drops suddenly at a 
return period somewhat above 1,000 yrs.  The fluctuations in the settlement hazard curves lead to 
fluctuations in the demand and capacity factors. 

 

Figure 7.41   Load and resistance factor curves, and demand and capacity factor curves for 
base case system in clay profile located in San Francisco.  Blue curves represent 
load and demand factors.  Green curves represent resistance and capacity factors. 
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7.4 DISCUSSION 

Relatively small-scale fluctuations in response hazard curves lead to larger fluctuations in 
demand and capacity factors.  While the program seeks to minimize these fluctuations, the only 
way to remove them completely is to reduce the integration increments to very low values.  The 
drawback of that approach is the exponential increase in the number of increments required to 
perform the design factor calculations.  Since the program execution is already relatively time-
consuming with the integration increments used to generate the figures in this chapter, increasing 
it further through the use of smaller integration increments is not appealing.  A more practical 
solution is to numerically smooth the design factor curves in a manner than captures the main 
trends of behavior while reducing the small-scale fluctuations. 
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8 Summary, Conclusions, and 
Recommendations for Future Research 

8.1 INTRODUCTION 

Highway bridges, by virtue of their large size, long spans, or locations in areas of poor soil 
conditions, are frequently supported on pile foundations.  These foundations may be subjected to 
vertical and horizontal loads, and to overturning moments.  These forces and moments may, as in 
the cases of gravity loads and dead loads, be essentially constant in amplitude and direction with 
time, or they may vary with time.  Variable loading may be of relatively low amplitude and high 
predictability, as in the case of traffic loads, or may be of much higher amplitude with high 
levels of unpredictability.  Extreme loads, such as those that may be imposed by storms, 
vehicular impact, or earthquakes, occur infrequently, but can have very high impacts on 
foundation loading and bridge performance. 

This report describes the results of a research investigation intended to develop and 
illustrate advanced procedures for design of pile foundations subjected to earthquake loading.  
The procedure makes use of a framework for performance-based earthquake engineering 
evaluation developed by the Pacific Earthquake Engineering Research (PEER) Center.  For 
practical application to the pile foundation design problem, in which an infinite number of 
possible bridge types and configurations is combined with a virtually infinite number of different 
pile foundation types and geometries in a virtually infinite number of possible soil conditions, 
the PEER framework had to be modified and extended.  The result is a framework and 
computational model for the evaluation of design factors, i.e., load and resistance factors for 
force-based design, and analogous demand and capacity factors for displacement-based design.  
These factors are developed in a manner that accounts more completely for local seismicity than 
currently available procedures, and therefore provides designs with a more complete and 
consistent consideration of earthquake loading. 

8.2 SUMMARY 

The use of pile foundations and the manner in which they mobilize resistance to applied loads 
was reviewed.  Procedures for estimation of axial load capacity can be based on pile geometry 
and soil strength characteristics, driving resistance with simple pile driving formulae, driving 
resistance with wave equation analyses based on measurements during driving, and from pile 
load tests.  These procedures require different forms of information and provide results with 
different levels of uncertainty.  Each can be used to predict a pile capacity, i.e., a limiting force 
beyond which “failure” would be considered to have occurred.  For piles in clay, exceedance of 
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the axial pile capacity leads to the relatively rapid onset of large deformations.  Exceedance of 
pile capacity in sands, however, does not lead to such rapidly increasing deformations.  
Procedures such as that of Davisson (ref) have proven effective for consistent estimation of axial 
pile capacities.  Piles subjected to lateral loading behave differently than in axial loading due to 
the fact that piles are so much more flexible when loaded in their transverse direction than when 
loaded axially.  The lateral load response of pile foundations is evaluated using soil-structure 
interaction principles in which the stiffness of the soil affects the movement of the pile and the 
movement of the pile affects the stiffness of the soil.  For laterally loaded pile problems, the 
notion of “failure” is often defined in terms of relative pile displacements, often expressed as a 
fraction of the diameter of the pile.  Pile groups allow very heavy column loads to be shared by 
multiple piles all connected to a common pile cap.  The behavior of the group may be affected by 
the orientation and spacing of the piles within the group.  When piles are spaced closely, the 
zones of the soil stressed by individual piles may overlap in such a manner that the capacity of 
the group is not equal to the sum of the capacities of the individual piles.  Such group effects can 
affect the behavior of the pile group, although the exact manner in which they do so is difficult to 
determine for the case of seismic loading in which the directions of the resultant forces are 
changing continuously in three dimensions. 

The design of foundations requires criteria for acceptable performance of the foundation, 
and performance can be described in a number of different ways.  Foundations have historically 
been designed to have the capacity to resist the maximum anticipated loading, with the 
assumption that a load greater than the capacity would cause failure of the foundation.  In some 
cases, exceedance of capacity can lead to large and damaging deformations, but in other cases it 
may not.  The notions of performance, which can be expressed in terms of loads and resistances, 
deformations and allowable deformations, or in terms of physical damage or losses are reviewed 
and compared.  The notion of uncertainty and its effects on foundation performance are reviewed 
and procedures for its consideration in design, e.g., through reliability-based design are 
described.  The implementation of reliability-based design through the use of load and resistance 
factors is introduced.  Finally, the PEER framework for performance-based earthquake 
engineering evaluation is described and a modified version of it, suitable for the task of 
evaluating foundation performance, is developed. 

The response of pile foundations to earthquake loading is complex.  A pile group can be 
subjected to three orthogonal loads – one vertical, and two horizontal – and two overturning 
moments.  Torsional loading and response of individual foundations is generally not significant.  
Therefore, a given loading state consists of five different load components even under static 
loading conditions.  For some bridge and foundation configurations, the static lateral loads and 
overturning moments may be relatively low, but they may be higher for other configurations.  
Under seismic conditions, in which the bridge and its foundations are subjected to three-
dimensional motions that can translate into significant dynamic forces and overturning moments 
in all directions, the loading can be extremely complex and severe.  A two-step analysis process 
consistent with the modification of the PEER performance-based earthquake engineering 
framework was developed to allow consideration of multiple bridge and foundation 
configurations.  In this framework, a structural analysis is performed with an approximate model 
of the foundation to identify the loading histories applied to the foundation under earthquake 
loading conditions.  In the second stage, the loading from the first stage is applied to the 
foundation and the response computed.  Both analyses were implemented in the OpenSees 
(OpenSource for Earthquake Engineering Simulation) finite element analysis program.  The 
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foundation model used discrete p-y, t-z, and Q-z curves to represent interaction of the pile 
foundation with the surrounding soil and modeled the pile cap as being rigid.  The use of the 
discrete interaction elements was validated by comparison of predicted response with responses 
measured in full-scale static pile load tests and dynamic (centrifuge) model tests.  The discrete 
model was found to predict responses that were consistent with the observed responses.  It 
should be noted, however, that very little data on the actual performance of full-scale pile groups 
under strong dynamic loading is available; as a result, the type of statistical analyses often used 
to calibrate LRFD procedures is not possible for the case of seismically-loaded pile foundations. 

With the numerical model developed and validated, an extensive series of dynamic 
response analyses were performed.  A structural model consistent with one used in the ATC49 
study that developed guidelines for LRFD was developed and used to determine the loading 
imposed on different pile group foundations.  The structure was assumed to have a fundamental 
period of 0.5 or 1.0 sec in accordance with the periods of bridges commonly used in highway 
applications.  Pile groups of five different configurations were analyzed in both sand and clay 
profiles.  The pile groups were subjected to 36 different combinations of initial static loads and 
then subjected to 50 different earthquake ground motions.  The responses under all of these 
conditions were examined, and it was determined that they could be grouped after normalizing 
loads/moments and displacements/rotations by reference values.  The reference values were 
taken as the values nominally associated with “failure” – for example, the vertical reference load 
was the failure load identified by the commonly used Davisson (ref) procedure, and the vertical 
reference displacement was the displacement corresponding to the Davisson failure load.  When 
normalized displacements/rotations were plotted as functions of normalized loads/moments, the 
behavior from widely varying foundation configurations fell within relatively consistent bands.  
In order to maximize the breadth of the response characterization, the normalized load and 
displacement approach was used to characterize pile group response.  By performing thousands 
and thousands of analyses for many different combinations of loads and configurations, a data 
set of pile foundation response to dynamic loading was developed.  Multiple regression analyses 
were performed to identify functional relationships describing the variation of displacements and 
rotation with loads and moments.  It should be noted that all five components of displacement 
and rotation are influenced by all five components of load and overturning moment.  The 
uncertainties in the predicted displacements and rotations conditional upon the known loads and 
moments were also characterized. 

The data generated by the OpenSees structural and foundation response analyses 
provided, upon characterization by the regression analyses, a simple probabilistic model for the 
response of pile foundations to earthquake loading.  The model could, by eliminating 
consideration of all uncertainties in structural and foundation characteristics and in the loading 
and response models, predict the deterministic (or median) response of a foundation to seismic 
loading.  It could also allow consideration of those uncertainties to compute distributions of 
dynamic loads and moments or displacements and rotations.  In seismic design, however, 
probability distributions are not commonly used directly because the dimension of time must be 
considered – earthquake-induced loads can vary from the very weak loading associated with 
small earthquakes that occur relatively frequently to the very strong loading that occurs only 
rarely.  Seismic loading and response are commonly described in terms of hazard curves that 
show the mean annual rate of exceedance (approximately equal to the mean annual probability) 
of some level of ground motion.  In conventional seismic design, a design ground motion level is 
selected based on some specified mean annual rate of exceedance (or its reciprocal, the return 
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period).  The PEER performance-based framework utilizes the entire hazard curve so that all 
levels of ground motion are considered.  A modification of that framework was developed to 
allow computation of hazard curves with and without uncertainty in loads, responses, and 
capacities.  This framework was then extended to allow computation of load and resistance 
factors for load-based performance evaluations, and of demand and capacity factors for 
displacement-based evaluations.  These design factors are tied to return periods, so that one can 
select load (or demand) and resistance (or capacity) factors that will produce designs with 
specified return periods of limit state exceedance.  With the aid of certain assumptions, closed-
form expressions for the design factors were developed to provide basic insight into the factors 
that most strongly affect their values.  For more general conditions, however, computation of the 
design factors for up to five components of load/response requires numerical integration in up to 
five dimensions, a problem that proves to be both difficult and time-consuming.  A computer 
program was developed to carry out these integrations and to compute the design factors for 
virtually any set of conditions.  The program was validated by checking its agreement with the 
closed-form solution when the assumptions of the closed-form solution were made, and by 
checking the general reasonableness of its solutions with various parametric permutations. 

Finally, the program was used to explore the effects of different parameters and 
uncertainty levels on load and response hazard curves and on design factors.  A base case 
structure/foundation system was assumed to be located in eight California and eight Washington 
cities, all distributed in areas ranging from very low to very high seismicity.  For each case, load 
and displacement hazard curves were computed, as were load and resistance factors and demand 
and capacity factors.  Examples of the computed hazard curves were presented; in some cases, 
all five hazard curves were presented and, in other cases, one or two components were presented 
as examples of the loads, responses, and design factors.  Examples from locations with different 
levels of seismicity included San Francisco, Eureka, and Irvine in California, and Aberdeen and 
Seattle in Washington.  Analyses were reported for pile groups of different size – 3x3, 5x5, and 
7x7 groups all assumed to be located in San Francisco were analyzed and their hazard curves and 
design factors compared.  The seismic response of pile groups is influenced by the initial, static 
loads applied to them.  A set of five initial load cases was evaluated, with each having increasing 
static load amplitudes (or decreasing static factors of safety).  Hazard curves and design factors 
were computed and compared for all five load cases.  The nature of structural response can also 
influence foundation response.  Analyses were performed considering structures that responded 
nonlinearly to ground motions with three levels of nonlinearity.  The different degrees of 
structural nonlinearity were observed to significantly influence both load and demand factors 
with a smaller effect on resistance and capacity factors.  The design factor framework considers 
the effects of uncertainties, so analyses were performed with different levels of uncertainty in 
loading given ground motion intensity, in response given loading and in load and displacement 
capacities.  Finally, the effects of different soil type were computed and compared. 

8.3 CONCLUSIONS 

The research described in this report was directed toward development and implementation of a 
performance-based framework for the establishment of reliability-based design factors for pile 
foundations.  The process of developing this framework in a form that could be applied to the 
multitude of possible bridge, foundation, site, and subsurface conditions that foundation 
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designers must consider led to an extension of the PEER PBEE framework.  That extension was 
pursued from both theoretical and practical perspectives.  Finally, the numerical implementation 
of the procedures developed in this research were applied to different pile foundation systems 
located in different seismic regions.  All of these activities allowed a number of conclusions to 
be drawn. 

1. The pile group response problem is complicated.  Prediction of the complete response 
requires prediction of five components of response – three displacements and two 
rotations – each of which is affected by five components of both static and dynamic 
loading.  The various components of loading can have different relative amplitudes and 
different degrees of correlation depending on the nature of the bridge, the site, and 
individual ground motions.  The loads may be linearly or nonlinearly related to the 
ground motion and the response may be linearly or nonlinearly related to the loading. 

2. The OpenSees finite element program is capable of representing the static and dynamic 
response of three-dimensional pile groups subjected to loading produced by three–
dimensional ground motions in a practical manner.  OpenSees has nonlinear, inelastic, 
discrete p-y, t-z, and Q-z elements that can represent the most important effects of the 
complex interaction between piles and soil under static and seismic loading in a relative 
efficient manner computationally.  The OpenSees model used in this research has been 
shown capable of producing good predictions of pile response in full-scale static load 
tests and of seismic pile group response in centrifuge model tests. 

3. Essentially no data is available for calibration of reliability-based design procedures 
using the type of statistical analyses commonly used for calibration of LRFD procedures.  
Data on the seismic response of full-scale pile foundations subjected to earthquake 
loading is virtually non-existent.  While a framework for handling uncertainty in pile 
foundation seismic response can be developed, the appropriate values of that uncertainty 
are themselves uncertain. 

4. A two-stage approach is useful for evaluating the potential responses of different pile 
foundations supporting different bridges at different sites.  Because of the virtually 
infinite number of combinations of bridge, site, foundation, and soil conditions, the 
problem of predicting foundation response from ground motions was subdivided into two 
stages.  The first stage involves predicting foundation loads from ground motions, and the 
second stage involves predicting foundation response from foundation loading.  This 
modular approach can be handled in a performance-based design framework, and offers 
great flexibility in terms of evaluating the effects of different structural and geotechnical 
factors on foundation response and design. 

5. Theoretical, closed-form solutions can be developed for individual, scalar cases and 
extended to the two-stage approach to compute load- and displacement-based design 
factors.  These solutions require certain assumptions about the shapes of ground motion 
hazard curves and load/response models – the assumptions can be approximately 
consistent with general trends of actual behavior, but they do not accurately represent 
actual behavior.  The closed-form solutions do, however, provide insight into the relative 
importance of factors that affect hazard curves and design factors, and can be used to 
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check numerical solutions when those solutions are applied to idealized problems that 
satisfy the required assumptions. 

6. The closed-form solutions indicate that design factors are influenced by the slope of the 
ground motion hazard curve, the levels of curvature of the load and response models, and 
the uncertainties in the load and response models. 

7. For realistic problems, in which hazard curves and load/response models may not have 
the forms required for the closed-form solution, and where individual response 
components are influenced by multiple load components, the load and response hazard 
curves and the load- and displacement-based design factors must be computed 
numerically.  The calculations require numerical integration, which is relatively 
straightforward and fast for a single variable; the accuracy of the calculations increases 
with decreasing size of the integration increment but the time required for the 
calculations increases.  For the pile problem, the numerical solution requires integration 
over all components of loading, with consideration of uncertainty, for all components of 
response.  This means that the integration must be performed in five dimensions for each 
of five response components; the total number of calculations is proportional to the 
product of the number of integration increments in each direction.  If each loading 
variable is divided into 100 increments, a total of 1005 = 10 billion probabilistic 
calculations would need to be performed – such a computational burden would be very 
time-consuming to satisfy. 

8. The computational process could be sped up by using different numbers of integration 
increments for different variables.  In the calculations described in this report, primary 
and secondary loading variables were defined – the vertical load was the primary variable 
for settlement (vertical displacement) and all other load components were secondary 
variables.  The same approach was used for the other response components.  Since they 
had the greatest effect on the various response components, the primary variables were 
discretized more finely than the secondary variables.  With this approach, cutting the 
number of integration increments of the secondary variables in half led to a reduction in 
total calculations by a factor of 24 = 16. 

9. Examination of the pile group load-response data from the OpenSees analyses indicated 
that the responses of different pile groups subjected to different levels of loading could be 
combined to a great degree through the use of normalized load and response variables.  
The normalized loads were defined as the loads divided by reference loads, which were 
taken as the loads causing “failure” as commonly (and consistently) defined in foundation 
design.  The normalized displacements were taken as the displacements divided by 
reference displacements, which were the displacements associated with the reference 
loads.  Expressions for normalized displacements as functions of normalized loads 
developed through regression analyses on a large database of OpenSees simulations 
showed that differences between the median responses for different systems were small 
relative to the overall uncertainties in displacements. 

10. Parametric analyses using a computer program developed to carry out the performance-
based calculations were performed to investigate the influence of a number of factors on 
design factors.  The results of these parametric analyses led to the following conclusions: 
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(a) Actual design factors vary with return period, in contrast to the constant nature of 
design factors from the closed-form solutions.  The design factors can increase or 
decrease with return period depending on the nature of the spectral acceleration 
hazard curve and the load/response model behavior. 

(b) Loading hazard curves, which are computed directly from the spectral acceleration 
hazard curve are well behaved with the relatively simple loading models used in this 
research.  With more complex loading models, the loading hazard curves could 
exhibit more complex behavior. 

(c) Design factors are affected by the entire ground motion hazard curve.  The position of 
the hazard curve influences load and demand factors, but so does the slope of that 
curve.  Steeper ground motion hazard curves lead to larger load and resistance 
factors. 

(d) Displacement demand factors are larger than load factors and displacement capacity 
factors are smaller than resistance factors.  In many cases, the differences are quite 
large.  The differences result from the additional uncertainty involved in predicting 
displacements given loads, which can be appreciable.  In general, earthquake-induced 
loads can be predicted more accurately than earthquake-induced displacements. 

(e) The size of a pile group affects design factors to an degree that depends on the 
definition of reference loads and reference displacements.  If the reference values are 
independent of group size, as in the case of vertical loads (per pile), load factors will 
be unaffected by pile group size.  Because response components, such as settlement, 
are affected by multiple load components, however, they will be affected by group 
size. 

(f) Static loads influence the likelihood of reaching limit states and have strong effects 
on hazard curves, but can also affect design factors.  Demand factors are affected 
more than capacity factors, and the effect of static load increases within increasing 
return period. 

(g) Structural behavior also influences foundation loading and response.  Increasing 
nonlinearity of structural response, as may occur when columns yield, tend to reduce 
loading on the foundation, which in turn reduces median displacements.  These 
reductions, however, steepen the load and response hazard curves, which tends to 
increase load and demand factors.  Resistance and capacity factors are reduced, but at 
a much lower rate than the load and capacity factors are increased. 

(h) Uncertainties in estimated loads (given ground motion intensity) and displacements 
(given loads) play a strong role in determining design factors.  With all other things 
being equal, uncertainties act as “amplifiers” for load and demand factors and 
“attenuators” for resistance and capacity factors.  Increasing uncertainty, for a given 
return period, will lead to higher load and demand factors and lower resistance and 
capacity factors. 

These conclusions are based on observations made over the course of the research 
project.  During the project, parametric analyses explored the influence of a number of quantities 
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and parameters on design factors, but there are many more possible permutations of parameters, 
relationships, and uncertainties that can be examined.  Such efforts will undoubtedly lead to 
better understanding of design factors and additional conclusions about their behavior. 

8.4 RECOMMENDATIONS FOR FUTURE RESEARCH 

The research described in this report was carried out over an extended period of time, in fact, a 
more extended period of time than was originally anticipated.  As the research progressed, 
complexities and interdependencies were discovered and addressed as appropriately as possible.  
As with many research projects, a look backward reveals things that could have been done 
differently, and things that could be done to extend or better support the goals of the work.  Some 
of those items are briefly discussed in the following paragraphs. 

The OpenSees analyses were effective and are considered to provide a good indication of 
pile group behavior for the conditions considered.  Additional analyses could provide a more 
extensive database with which to develop load and resistance models.  Most permutations of 
different conditions were performed with a suite of 50 ground motions.  In retrospect, these 
analyses could have been performed with a smaller number of motions, which would have 
allowed more sets of conditions to be analyzed.  Relatively late in the study, a number of 
additional analyses were performed with 10 motions to attempt to define median behavior.  In 
such cases, where different numbers of data points are used for different sets of conditions, 
mixed effects regression could be used to better characterize the uncertainty in the models.  
Alternatively, with smaller numbers of motions, it would have been easier to simulate different 
conditions using the same number of motions. 

Additional analyses with a wider variety of different structural characteristics, including 
significantly different loading amplitudes in different directions, would provide a more robust 
database upon which to build a response model.  With the assumed free-standing, single-mass 
structure utilized in the analyses performed in the majority of the analyses reported here, 
correlations between loading components, e.g., lateral load and overturning moment, were 
probably greater than would be expected in most actual bridge structures.  

Additional exploration or development of the OpenSees pile model to allow improved 
performance under larger pile displacements would be helpful.  Cases in which loads and 
deformations became significantly larger than the reference load and displacements tended not to 
converge and to cause the program to crash.  There is a concern that the behavior described by 
the regression equations (Table 5.4) indicates displacements and rotations that do not increase as 
quickly as they should at high normalized loads and overturning moments.  Improved p-y, t-z, 
and Q-z elements could allow the development of larger pile cap displacements/rotations, which 
would allow more accurate description of response at larger, but perhaps still tolerable for long 
return periods, displacements and rotations. 

Smooth functions could be fit to the computed hazard curves to allow computation of 
smoother design factors.  Alternatively, smooth functions could be fit to the computed design 
factors to avoid fluctuations of design factors with return period that are of numerical origin. 

Optimization of the numbers of integration increments for the different load components 
could lead to faster execution times.  In the current version of the program, parameters are 
characterized as primary or secondary variables.  By testing different combinations of integration 
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increments, it may be possible to increase execution speed by customizing the integration 
scheme for specific problems.  The use of parallel processing would be particularly effective for 
the design factor calculations. 
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